首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We show that, for a natural notion of quasirandomness in k‐uniform hypergraphs, any quasirandom k‐uniform hypergraph on n vertices with constant edge density and minimum vertex degree Ω(nk‐1) contains a loose Hamilton cycle. We also give a construction to show that a k‐uniform hypergraph satisfying these conditions need not contain a Hamilton ?‐cycle if k? divides k. The remaining values of ? form an interesting open question. © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 49, 363–378, 2016  相似文献   

2.
For k ≥ 2 and r ≥ 1 such that k + r ≥ 4, we prove that, for any α > 0, there exists ε > 0 such that the union of an n‐vertex k‐graph with minimum codegree and a binomial random k‐graph with on the same vertex set contains the rth power of a tight Hamilton cycle with high probability. This result for r = 1 was first proved by McDowell and Mycroft.  相似文献   

3.
We give an algorithmic proof for the existence of tight Hamilton cycles in a random r‐uniform hypergraph with edge probability for every . This partly answers a question of Dudek and Frieze (Random Struct Algor 42 (2013), 374–385), who used a second moment method to show that tight Hamilton cycles exist even for where arbitrary slowly, and for . The method we develop for proving our result applies to related problems as well. © 2013 Wiley Periodicals, Inc. Random Struct. Alg., 46, 446–465, 2015  相似文献   

4.
Let H be a 3‐uniform hypergraph with n vertices. A tight Hamilton cycle C ? H is a collection of n edges for which there is an ordering of the vertices v1,…,vn such that every triple of consecutive vertices {vi,vi+1,vi+2} is an edge of C (indices are considered modulo n ). We develop new techniques which enable us to prove that under certain natural pseudo‐random conditions, almost all edges of H can be covered by edge‐disjoint tight Hamilton cycles, for n divisible by 4. Consequently, we derive the corollary that random 3‐uniform hypergraphs can be almost completely packed with tight Hamilton cycles whp, for n divisible by 4 and p not too small. Along the way, we develop a similar result for packing Hamilton cycles in pseudo‐random digraphs with even numbers of vertices. © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 2011  相似文献   

5.
In any r‐uniform hypergraph for 2 ≤ tr we define an r‐uniform t‐tight Berge‐cycle of length ?, denoted by C?(r, t), as a sequence of distinct vertices v1, v2, … , v?, such that for each set (vi, vi + 1, … , vi + t ? 1) of t consecutive vertices on the cycle, there is an edge Ei of that contains these t vertices and the edges Ei are all distinct for i, 1 ≤ i ≤ ?, where ? + jj. For t = 2 we get the classical Berge‐cycle and for t = r we get the so‐called tight cycle. In this note we formulate the following conjecture. For any fixed 2 ≤ c, tr satisfying c + tr + 1 and sufficiently large n, if we color the edges of Kn(r), the complete r‐uniform hypergraph on n vertices, with c colors, then there is a monochromatic Hamiltonian t‐tight Berge‐cycle. We prove some partial results about this conjecture and we show that if true the conjecture is best possible. © 2008 Wiley Periodicals, Inc. J Graph Theory 59: 34–44, 2008  相似文献   

6.
We show that every 3‐uniform hypergraph H = (V,E) with |V(H)| = n and minimum pair degree at least (4/5 + o(1))n contains a squared Hamiltonian cycle. This may be regarded as a first step towards a hypergraph version of the Pósa‐Seymour conjecture.  相似文献   

7.
Given two integers n and k, nk > 1, a k-hypertournament T on n vertices is a pair (V, A), where V is a set of vertices, |V| = n and A is a set of k-tuples of vertices, called arcs, so that for any k-subset S of V, A$ contains exactly one of the k! k-tuples whose entries belong to S. A 2-hypertournament is merely an (ordinary) tournament. A path is a sequence v1a1v2v3···vt−1vt of distinct vertices v1, v2,⋖, vt and distinct arcs a1, ⋖, at−1 such that vi precedes vt−1 in a, 1 ≤ it − 1. A cycle can be defined analogously. A path or cycle containing all vertices of T (as vi's) is Hamiltonian. T is strong if T has a path from x to y for every choice of distinct x, yV. We prove that every k-hypertournament on n (k) vertices has a Hamiltonian path (an extension of Redeis theorem on tournaments) and every strong k-hypertournament with n (k + 1) vertices has a Hamiltonian cycle (an extension of Camions theorem on tournaments). Despite the last result, it is shown that the Hamiltonian cycle problem remains polynomial time solvable only for k ≤ 3 and becomes NP-complete for every fixed integer k ≥ 4. © 1997 John Wiley & Sons, Inc. J Graph Theory 25: 277–286, 1997  相似文献   

8.
陈爱莲  李皓 《数学研究》2010,43(2):114-121
假设c是一个小于1/1152的常数,证明:对于每个充分大的偶数n,如果一个具有n个顶点的3一致完全超图的边着色满足每种颜色出现的次数不超过[cn],那么必含有一个每条边颜色都不一样的彩色哈密顿圈。  相似文献   

9.
We show that for every there exists C > 0 such that if then asymptotically almost surely the random graph contains the kth power of a Hamilton cycle. This determines the threshold for appearance of the square of a Hamilton cycle up to the logarithmic factor, improving a result of Kühn and Osthus. Moreover, our proof provides a randomized quasi‐polynomial algorithm for finding such powers of cycles. Using similar ideas, we also give a randomized quasi‐polynomial algorithm for finding a tight Hamilton cycle in the random k‐uniform hypergraph for . The proofs are based on the absorbing method and follow the strategy of Kühn and Osthus, and Allen et al. The new ingredient is a general Connecting Lemma which allows us to connect tuples of vertices using arbitrary structures at a nearly optimal value of p. Both the Connecting Lemma and its proof, which is based on Janson's inequality and a greedy embedding strategy, might be of independent interest.  相似文献   

10.
We investigate minimum vertex degree conditions for 3-uniform hypergraphs which ensure the existence of loose Hamilton cycles. A loose Hamilton cycle is a spanning cycle in which only consecutive edges intersect and these intersections consist of precisely one vertex.  相似文献   

11.
For a given graph F we consider the family of (finite) graphs G with the Ramsey property for F, that is the set of such graphs G with the property that every two‐coloring of the edges of G yields a monochromatic copy of F. For F being a triangle Friedgut, Rödl, Ruciński, and Tetali (2004) established the sharp threshold for the Ramsey property in random graphs. We present a simpler proof of this result which extends to a more general class of graphs F including all cycles. The proof is based on Friedgut's criteria (1999) for sharp thresholds and on the recently developed container method for independent sets in hypergraphs by Saxton and Thomason and by Balogh, Morris and Samotij. The proof builds on some recent work of Friedgut et al. who established a similar result for van der Waerden's theorem.  相似文献   

12.
In this paper we show that e/n is the sharp threshold for the existence of tight Hamilton cycles in random k ‐uniform hypergraphs, for all k ≥ 4. When k = 3 we show that 1/n is an asymptotic threshold. We also determine thresholds for the existence of other types of Hamilton cycles. © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 2013  相似文献   

13.
The paradigm of many choices has influenced significantly the design of efficient data structures and, most notably, hash tables. Cuckoo hashing is a technique that extends this concept. There, we are given a table with n locations, and we assume that each location can hold one item. Each item to be inserted chooses randomly k ≥ 2 locations and has to be placed in any one of them. How much load can cuckoo hashing handle before collisions prevent the successful assignment of the available items to the chosen locations? Practical evaluations and theoretical analysis of this method have shown that one can allocate a number of elements that is a large proportion of the size of the table, being very close to 1 even for small values of k such as 4 or 5. In this paper we show that there is a critical value for this proportion: with high probability, when the amount of available items is below this value, then these can be allocated successfully, but when it exceeds this value, the allocation becomes impossible. We give explicitly for each k ≥ 3 this critical value. This answers an open question posed by Mitzenmacher (ESA '09) and underpins theoretically the experimental results. Our proofs are based on the translation of the question into a hypergraph setting, and the study of the related typical properties of random k ‐uniform hypergraphs.© 2012 Wiley Periodicals, Inc. Random Struct., 2012  相似文献   

14.
We study sufficient conditions for Hamiltonian cycles in hypergraphs, and obtain both Turán- and Dirac-type results. While the Turán-type result gives an exact threshold for the appearance of a Hamiltonian cycle in a hypergraph depending only on the extremal number of a certain path, the Dirac-type result yields a sufficient condition relying solely on the minimum vertex degree.  相似文献   

15.
We prove that any k-uniform hypergraph on n vertices with minimum degree at least contains a loose Hamilton cycle. The proof strategy is similar to that used by Kühn and Osthus for the 3-uniform case. Though some additional difficulties arise in the k-uniform case, our argument here is considerably simplified by applying the recent hypergraph blow-up lemma of Keevash.  相似文献   

16.
Recently, Mubayi and Wang showed that for r4 and ?3, the number of n-vertex r-graphs that do not contain any loose cycle of length ? is at most 2O(nr?1(logn)(r?3)(r?2)). We improve this bound to 2O(nr?1loglogn).  相似文献   

17.
《Discrete Mathematics》2022,345(5):112797
If the line graph of a graph G decomposes into Hamiltonian cycles, what is G? We answer this question for decomposition into two cycles.  相似文献   

18.
A hamiltonian path (cycle) in an n-vertex 3-uniform hypergraph is a (cyclic) ordering of the vertices in which every three consecutive vertices form an edge. For large n, we prove an analog of the celebrated Dirac theorem for graphs: there exists n0 such that every n-vertex 3-uniform hypergraph H, n?n0, in which each pair of vertices belongs to at least n/2−1 (⌊n/2⌋) edges, contains a hamiltonian path (cycle, respectively). Both results are easily seen to be optimal.  相似文献   

19.
In this article, we analyze the appearance of a Hamilton cycle in the following random process. The process starts with an empty graph on nlabeled vertices. At each round we are presented with K = K(n) edges, chosen uniformly at random from the missing ones, and are asked to add one of them to the current graph. The goal is to create a Hamilton cycle as soon as possible. We show that this problem has three regimes, depending on the value of K. For K = o(log n), the threshold for Hamiltonicity is n log n, i.e., typically we can construct a Hamilton cycle K times faster that in the usual random graph process. When K = ω(log n) we can essentially waste almost no edges, and create a Hamilton cycle in n + o(n) rounds with high probability. Finally, in the intermediate regime where K = Θ(log n), the threshold has order nand we obtain upper and lower bounds that differ by a multiplicative factor of 3. © 2010 Wiley Periodicals, Inc. Random Struct. Alg., 2010  相似文献   

20.
We determine under which conditions certain natural models of random constraint satisfaction problems have sharp thresholds of satisfiability. These models include graph and hypergraph homomorphism, the (d,k,t)‐model, and binary constraint satisfaction problems with domain size three. © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号