首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
For k ≥ 2 and r ≥ 1 such that k + r ≥ 4, we prove that, for any α > 0, there exists ε > 0 such that the union of an n‐vertex k‐graph with minimum codegree and a binomial random k‐graph with on the same vertex set contains the rth power of a tight Hamilton cycle with high probability. This result for r = 1 was first proved by McDowell and Mycroft.  相似文献   

2.
For positive integers r>?, an r‐uniform hypergraph is called an ?‐cycle if there exists a cyclic ordering of its vertices such that each of its edges consists of r consecutive vertices, and such that every pair of consecutive edges (in the natural ordering of the edges) intersect in precisely ? vertices; such cycles are said to be linear when ?=1, and nonlinear when ?>1. We determine the sharp threshold for nonlinear Hamiltonian cycles and show that for all r>?>1, the threshold for the appearance of a Hamiltonian ?‐cycle in the random r‐uniform hypergraph on n vertices is sharp and given by for an explicitly specified function λ. This resolves several questions raised by Dudek and Frieze in 2011.10  相似文献   

3.
Let {Gi} be the random graph process: starting with an empty graph G0 with n vertices, in every step i ≥ 1 the graph Gi is formed by taking an edge chosen uniformly at random among the nonexisting ones and adding it to the graph Gi ? 1. The classical “hitting‐time” result of Ajtai, Komlós, and Szemerédi, and independently Bollobás, states that asymptotically almost surely the graph becomes Hamiltonian as soon as the minimum degree reaches 2, that is if δ(Gi) ≥ 2 then Gi is Hamiltonian. We establish a resilience version of this result. In particular, we show that the random graph process almost surely creates a sequence of graphs such that for edges, the 2‐core of the graph Gm remains Hamiltonian even after an adversary removes ‐fraction of the edges incident to every vertex. A similar result is obtained for perfect matchings.  相似文献   

4.
A uniform attachment graph (with parameter k), denoted Gn,k in the paper, is a random graph on the vertex set [n], where each vertex v makes k selections from [v ? 1] uniformly and independently, and these selections determine the edge set. We study several aspects of this graph. Our motivation comes from two similarly constructed, well‐studied random graphs: k‐out graphs and preferential attachment graphs. In this paper, we find the asymptotic distribution of its minimum degree and connectivity, and study the expansion properties of Gn,k to show that the conductance of Gn,k is of order . We also study the bootstrap percolation on Gn,k, where r infected neighbors infect a vertex, and show that if the probability of initial infection of a vertex is negligible compared to then with high probability (whp) the disease will not spread to the whole vertex set, and if this probability exceeds by a sub‐logarithmical factor then the disease whp will spread to the whole vertex set.  相似文献   

5.
For any set Ω of non‐negative integers such that , we consider a random Ω‐k‐tree Gn,k that is uniformly selected from all connected k‐trees of (n + k) vertices such that the number of (k + 1)‐cliques that contain any fixed k‐clique belongs to Ω. We prove that Gn,k, scaled by where Hk is the kth harmonic number and σΩ > 0, converges to the continuum random tree . Furthermore, we prove local convergence of the random Ω‐k‐tree to an infinite but locally finite random Ω‐k‐tree G∞,k.  相似文献   

6.
A classical result of Komlós, Sárközy, and Szemerédi states that every n‐vertex graph with minimum degree at least (1/2 + o(1))n contains every n‐vertex tree with maximum degree . Krivelevich, Kwan, and Sudakov proved that for every n‐vertex graph Gα with minimum degree at least αn for any fixed α > 0 and every n‐vertex tree T with bounded maximum degree, one can still find a copy of T in Gα with high probability after adding O(n) randomly chosen edges to Gα. We extend the latter results to trees with (essentially) unbounded maximum degree; for a given and α > 0, we determine up to a constant factor the number of random edges that we need to add to an arbitrary n‐vertex graph with minimum degree αn in order to guarantee with high probability a copy of any fixed n‐vertex tree with maximum degree at most Δ.  相似文献   

7.
In this paper, we study the existence of perfect matchings and Hamiltonian cycles in the preferential attachment model. In this model, vertices are added to the graph one by one, and each time a new vertex is created it establishes a connection with m random vertices selected with probabilities proportional to their current degrees. (Constant m is the only parameter of the model.) We prove that if , then asymptotically almost surely there exists a perfect matching. Moreover, we show that there exists a Hamiltonian cycle asymptotically almost surely, provided that . One difficulty in the analysis comes from the fact that vertices establish connections only with vertices that are “older” (ie, are created earlier in the process). However, the main obstacle arises from the fact that edges in the preferential attachment model are not generated independently. In view of that, we also consider a simpler setting—sometimes called uniform attachment—in which vertices are added one by one and each vertex connects to m older vertices selected uniformly at random and independently of all other choices. We first investigate the existence of perfect matchings and Hamiltonian cycles in the uniform attachment model, and then extend the argument to the preferential attachment version.  相似文献   

8.
A 1992 conjecture of Alon and Spencer says, roughly, that the ordinary random graph Gn,1/2 typically admits a covering of a constant fraction of its edges by edge‐disjoint, nearly maximum cliques. We show that this is not the case. The disproof is based on some (partial) understanding of a more basic question: for and A1,…,At chosen uniformly and independently from the k‐subsets of {1,…,n}, what can one say about Our main concern is trying to understand how closely the answers to this and a related question about matchings follow heuristics gotten by pretending that certain (dependent) choices are made independently.  相似文献   

9.
We investigate the asymptotic structure of a random perfect graph Pn sampled uniformly from the set of perfect graphs on vertex set . Our approach is based on the result of Prömel and Steger that almost all perfect graphs are generalised split graphs, together with a method to generate such graphs almost uniformly. We show that the distribution of the maximum of the stability number and clique number is close to a concentrated distribution L(n) which plays an important role in our generation method. We also prove that the probability that Pn contains any given graph H as an induced subgraph is asymptotically 0 or or 1. Further we show that almost all perfect graphs are 2‐clique‐colorable, improving a result of Bacsó et al. from 2004; they are almost all Hamiltonian; they almost all have connectivity equal to their minimum degree; they are almost all in class one (edge‐colorable using Δ colors, where Δ is the maximum degree); and a sequence of independently and uniformly sampled perfect graphs of increasing size converges almost surely to the graphon .  相似文献   

10.
Given a graph on n vertices and an assignment of colours to the edges, a rainbow Hamilton cycle is a cycle of length n visiting each vertex once and with pairwise different colours on the edges. Similarly (for even n) a rainbow perfect matching is a collection of independent edges with pairwise different colours. In this note we show that if we randomly colour the edges of a random geometric graph with sufficiently many colours, then a.a.s. the graph contains a rainbow perfect matching (rainbow Hamilton cycle) if and only if the minimum degree is at least 1 (respectively, at least 2). More precisely, consider n points (i.e. vertices) chosen independently and uniformly at random from the unit d‐dimensional cube for any fixed . Form a sequence of graphs on these n vertices by adding edges one by one between each possible pair of vertices. Edges are added in increasing order of lengths (measured with respect to the norm, for any fixed ). Each time a new edge is added, it receives a random colour chosen uniformly at random and with repetition from a set of colours, where a sufficiently large fixed constant. Then, a.a.s. the first graph in the sequence with minimum degree at least 1 must contain a rainbow perfect matching (for even n), and the first graph with minimum degree at least 2 must contain a rainbow Hamilton cycle. © 2017 Wiley Periodicals, Inc. Random Struct. Alg., 51, 587–606, 2017  相似文献   

11.
12.
A milestone in probability theory is the law of the iterated logarithm (LIL), proved by Khinchin and independently by Kolmogorov in the 1920s, which asserts that for iid random variables with mean 0 and variance 1 In this paper we prove that LIL holds for various functionals of random graphs and hypergraphs models. We first prove LIL for the number of copies of a fixed subgraph H. Two harder results concern the number of global objects: perfect matchings and Hamiltonian cycles. The main new ingredient in these results is a large deviation bound, which may be of independent interest. For random k‐uniform hypergraphs, we obtain the Central Limit Theorem and LIL for the number of Hamilton cycles.  相似文献   

13.
It is well known that many random graphs with infinite variance degrees are ultra‐small. More precisely, for configuration models and preferential attachment models where the proportion of vertices of degree at least k is approximately k?(τ ? 1) with τ ∈ (2,3), typical distances between pairs of vertices in a graph of size n are asymptotic to and , respectively. In this paper, we investigate the behavior of the diameter in such models. We show that the diameter is of order precisely when the minimal forward degree dfwd of vertices is at least 2. We identify the exact constant, which equals that of the typical distances plus . Interestingly, the proof for both models follows identical steps, even though the models are quite different in nature.  相似文献   

14.
We show that for every there exists C > 0 such that if then asymptotically almost surely the random graph contains the kth power of a Hamilton cycle. This determines the threshold for appearance of the square of a Hamilton cycle up to the logarithmic factor, improving a result of Kühn and Osthus. Moreover, our proof provides a randomized quasi‐polynomial algorithm for finding such powers of cycles. Using similar ideas, we also give a randomized quasi‐polynomial algorithm for finding a tight Hamilton cycle in the random k‐uniform hypergraph for . The proofs are based on the absorbing method and follow the strategy of Kühn and Osthus, and Allen et al. The new ingredient is a general Connecting Lemma which allows us to connect tuples of vertices using arbitrary structures at a nearly optimal value of p. Both the Connecting Lemma and its proof, which is based on Janson's inequality and a greedy embedding strategy, might be of independent interest.  相似文献   

15.
We study the asymptotic behavior of the maximal multiplicity Mn = Mn(σ) of the block sizes in a set partition σ of [n] = {1,2,…,n}, assuming that σ is chosen uniformly at random from the set of all such partitions. It is known that, for large n, the blocks of a random set partition are typically of size W = W(n), with WeW = n. We show that, over subsequences {nk}k ≥ 1 of the sequence of the natural numbers, , appropriately normalized, converges weakly, as k, to , where Z1 and Z2 are independent copies of a standard normal random variable. The subsequences {nk}k ≥ 1, where the weak convergence is observed, and the quantity u depend on the fractional part fn of the function W(n). In particular, we establish that . The behavior of the largest multiplicity Mn is in a striking contrast to the similar statistic of integer partitions of n. A heuristic explanation of this phenomenon is also given.  相似文献   

16.
Let mnk. An m × n × k 0‐1 array is a Latin box if it contains exactly m n ones, and has at most one 1 in each line. As a special case, Latin boxes in which m = n = k are equivalent to Latin squares. Let be the distribution on m × n × k 0‐1 arrays where each entry is 1 with probability p, independently of the other entries. The threshold question for Latin squares asks when contains a Latin square with high probability. More generally, when does support a Latin box with high probability? Let ε > 0. We give an asymptotically tight answer to this question in the special cases where n = k and , and where n = m and . In both cases, the threshold probability is . This implies threshold results for Latin rectangles and proper edge‐colorings of Kn,n.  相似文献   

17.
We consider random subgraphs of a fixed graph with large minimum degree. We fix a positive integer k and let Gk be the random subgraph where each independently chooses k random neighbors, making kn edges in all. When the minimum degree then Gk is k‐connected w.h.p. for ; Hamiltonian for k sufficiently large. When , then Gk has a cycle of length for . By w.h.p. we mean that the probability of non‐occurrence can be bounded by a function (or ) where . © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 50, 143–157, 2017  相似文献   

18.
For graphs G and F, write if any coloring of the edges of G with colors yields a monochromatic copy of the graph F. Suppose is obtained from a graph S with s vertices and maximum degree d by subdividing its edges h times (that is, by replacing the edges of S by paths of length h + 1). We prove that there exists a graph G with no more than edges for which holds, provided that . We also extend this result to the case in which Q is a graph with maximum degree d on q vertices with the property that every pair of vertices of degree greater than 2 are distance at least h + 1 apart. This complements work of Pak regarding the size Ramsey number of “long subdivisions” of bounded degree graphs.  相似文献   

19.
Given a graph Γn=(V,E) on n vertices and m edges, we define the Erd?s‐Rényi graph process with host Γn as follows. A permutation e1,…,em of E is chosen uniformly at random, and for tm we let Γn,t=(V,{e1,…,et}). Suppose the minimum degree of Γn is δn) ≥ (1/2+ε)n for some constant ε>0. Then with high probability (An event holds with high probability (whp) if as n.), Γn,t becomes Hamiltonian at the same moment that its minimum degree reaches 2. Given 0 ≤ p ≤ 1 let Γn,p be the Erd?s‐Rényi subgraph of Γn, obtained by retaining each edge independently with probability p. When δn) ≥ (1/2+ε)n, we provide a threshold for Hamiltonicity in Γn,p.  相似文献   

20.
We show that any k‐uniform hypergraph with n edges contains two isomorphic edge disjoint subgraphs of size for k = 4, 5 and 6. This is best possible up to a logarithmic factor due to an upper bound construction of Erd?s, Pach, and Pyber who show there exist k‐uniform hypergraphs with n edges and with no two edge disjoint isomorphic subgraphs with size larger than . Furthermore, our result extends results Erd?s, Pach and Pyber who also established the lower bound for k = 2 (eg. for graphs), and of Gould and Rödl who established the result for k = 3. © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 48, 767–793, 2016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号