首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied 2‐(2‐benzofuranyl)‐2‐imidazoline (BFI) and characterized it by using infrared and Raman spectroscopies. The density functional theory (DFT) method together with Pople's basis set shows that two conformers exist for the title molecule as have been theoretically determined in the gas phase and that, probably, an average of both conformations is present in the solid phase. The harmonic vibrational wavenumbers for the optimized geometry of the latter conformer were calculated at the B3LYP/6‐31G* level in the proximity of the isolated molecule. For a complete assignment of the IR and Raman spectra in the compound in the solid phase, DFT calculations were combined with Pulay's scaled quantum mechanics force field (SQMFF) methodology in order to fit the theoretical wavenumbers to the experimental ones. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
A homogeneous, molecular, gas‐phase elimination kinetics of 2‐phenyl‐2‐propanol and 3‐methyl‐1‐ buten‐3‐ol catalyzed by hydrogen chloride in the temperature range 325–386 °C and pressure range 34–149 torr are described. The rate coefficients are given by the following Arrhenius equations: for 2‐phenyl‐2‐propanol log k1 (s?1) = (11.01 ± 0.31) ? (109.5 ± 2.8) kJ mol?1 (2.303 RT)?1 and for 3‐methyl‐1‐buten‐3‐ol log k1 (s?1) = (11.50 ± 0.18) ? (116.5 ± 1.4) kJ mol?1 (2.303 RT)?1. Electron delocalization of the CH2?CH and C6H5 appears to be an important effect in the rate enhancement of acid catalyzed tertiary alcohols in the gas phase. A concerted six‐member cyclic transition state type of mechanism appears to be, as described before, a rational interpretation for the dehydration process of these substrates. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
In this study 2‐(2′‐furyl)‐4,5‐1H‐dihydroimidazole (1) was prepared and then characterized by infrared, Raman, and multidimensional nuclear magnetic resonance (NMR) spectroscopies. The crystal and molecular structures of 1 were determined by X‐ray diffraction methods. The density functional theory (DFT) and second‐order Møller–Plesset theory (MP2) with Pople's basis set show that there are two conformers for the title molecule that have been theoretically determined in the gas phase, and that only one of them, conformer I, is present in the solid phase. NMR spectra observed for 1 were successfully compared with the calculated chemical shifts at the B3LYP/6‐311++G** level theorized for this conformer. The harmonic vibrational frequencies for the optimized geometry of the latter conformer were calculated at the B3LYP/6‐311++G** level in the approximation of the isolated molecule. For a complete assignment of the IR and Raman spectra in the solid phase of 1 , DFT calculations were combined with Pulay´s scaled quantum mechanics force field (SQMFF) methodology to fit the theoretical frequency values to the experimental ones. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
The α‐PbO2‐type TiO2 is synthesized under high‐pressure and high‐temperature environment and it shows higher photocatalytic activity as compared to rutile and anatase under UV irradiation. The reduction in α‐PbO2‐type TiO2 induces visible‐light photocatalytic activity. These results indicate that α‐PbO2‐type TiO2 is an important candidate material for use in a photocatalytic matrix.

  相似文献   


5.
A systematic series of ortho‐methyl‐ and nitro‐substituted arylhydrazones 2–6 formed by Japp–Klingemann reaction between pentane‐2,4‐dione and the respective aryldiazonium salts have been synthesized and studied by X‐ray crystal structure analysis, with added quantum chemical calculations. The optimized molecular geometries based on DFT calculations, enabling determination of relevant rotational barriers, and the calculated bond and ring critical points, using the method of ‘atoms in molecules’, were found to correspond with the experimental data, involving specific molecular conformations and hydrogen‐bonded ring structure dependent on the ortho‐substitution, thus making possible reliable structural prediction of this compound class. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
The kinetics of the gas‐phase elimination of α‐methyl‐trans‐cinamaldehyde catalyzed by HCl in the temperature range of 399.0–438.7 °C, and the pressure range of 38–165 Torr is a homogeneous, molecular, pseudo first‐order process and undergoing a parallel reaction to produce via (A) α‐methylstyrene and CO gas and via (B) β‐methylstyrene and CO gas. The decomposition of substrate E‐2‐methyl‐2‐pentenal was performed in the temperature range of 370.0–410.0 °C and the pressure range of 44–150 Torr also undergoing a molecular, pseudo first‐order reaction gives E‐2‐pentene and CO gas. These reactions were carried out in a static system seasoned reactions vessels and in the presence of toluene free radical inhibitor. The rate coefficients are given by the following Arrhenius expressions:
  • Products formation from α‐methyl‐trans‐cinamaldehyde
  • α‐methylstyrene :
  • β‐methylstyrene :
  • Products formation from E‐2‐methyl‐2‐pentenal
  • E‐2‐pentene :
The kinetic and thermodynamic parameters for the thermal decomposition of α‐methyl‐trans‐cinamaldehyde suggest that via (A) proceeds through a bicyclic transition state type of mechanism to yield α‐methylstyrene and carbon monoxide, whereas via (B) through a five‐membered cyclic transition state to give β‐methylstyrene and carbon monoxide. However, the elimination of E‐2‐methyl‐2‐pentenal occurs by way of a concerted cyclic five‐membered transition state mechanism producing E‐2‐pentene and carbon monoxide. The present results support that uncatalyzed α‐β‐unsaturated aldehydes decarbonylate through a three‐membered cyclic transition state type of mechanism. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
With its reputation as a high‐energy density fuel, aluminum hydride (AlH3) has received renewed attention as a material that is particularly suitable, not only for hydrogen storage but also for rocket propulsion. While the various phases of AlH3 have been investigated theoretically, there is a shortage of experimental studies corroborating the theoretical findings. In response to this, we present here an investigation of these compounds based primarily on two research areas in which there is the greatest scarcity of information in the literature, namely Raman and infrared (IR) absorption analysis. To the authors' knowledge, this is the first report of experimental far‐IR absorption results on these compounds. Two different samples prepared by broadly similar ethereal reactions of AlCl3 with LiAlH4 were analyzed. Both Raman and IR absorption measurements indicate that one sample is purely γ‐AlH3 and that the other is a mixture of α‐, β‐, and γ‐AlH3 phases. X‐ray diffraction confirms the spectroscopic findings, most notably for the β‐AlH3 phase, for which optical spectroscopic data are reported here for the first time. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
The conformational equilibria of 3‐methyl‐3‐silathiane 5 , 3‐fluoro‐3‐methyl‐3‐silathiane 6 and 1‐fluoro‐1‐methyl‐1‐silacyclohexane 7 have been studied using low temperature 13C NMR spectroscopy and theoretical calculations. The conformer ratio at 103 K was measured to be about 5 ax: 5 eq = 15:85, 6 ax: 6 eq = 50:50 and 7 ax: 7 eq = 25:75. The equatorial preference of the methyl group in 5 (0.35 kcal mol?1) is much less than in 3‐methylthiane 9 (1.40 kcal mol?1) but somewhat greater than in 1‐methyl‐1‐silacyclohexane 1 (0.23 kcal mol?1). Compounds 5–7 have low barriers to ring inversion: 5.65 (ax → eq) and 6.0 (eq → ax) kcal mol?1 ( 5 ), 4.6 ( 6 ), 5.1 (Meax → Meeq) and 5.4 (Meeq → Meax) kcal mol?1 ( 7 ). Steric effects cannot explain the observed conformational preferences, like equal population of the two conformers of 6 , or different conformer ratio for 5 and 7 . Actually, by employing the NBO analysis, in particular, considering the second order perturbation energies, vicinal stereoelectronic interactions between the Si–X and adjacent C–H, C–S, and C–C bonds proved responsible. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The Fourier transform infrared (4000–400 cm−1) and Fourier transform Raman (3500–500 cm−1) spectra of 4‐hydroxy‐3‐(3‐oxo‐1‐phenylbutyl)‐2H‐1‐benzopyran‐2‐one (Warfarin) have been measured and calculated. The structure optimization has been made using density functional theory (DFT) calculations. Complete vibrational assignments of the observed spectra have been compared with theoretical wavenumbers. The wavenumber increasing in the methyl group shows the electronic hyperconjugation effect. The natural bond orbital (NBO) analysis reveals the hyperconjugation interaction and the intramolecular hydrogen bonding. The first‐order hyperpolarizability has been calculated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
The bioreduction of N‐oxide compounds is the basis for the mode of action of a number of biologically active molecules. These compounds are thought to act by forming a reactive oxygen species through an intracellular reduction and subsequent redox cycling process within the organism. With these results in mind, the preliminary investigation into the electrochemical reduction of the benzisoxazole 2‐oxide ring system was undertaken, with the thought that this class of compounds would reduce in a similar fashion to other N‐oxide heterocycles. The electrochemical reduction of 3‐phenyl‐1,2‐benzisoxazole 2‐oxide on boron‐doped diamond was studied using cyclic and square wave voltammetry as well as controlled potential electrolysis and HPLC for qualitative identification of the reaction products. It was found that the reduction proceeded with an initial quasi‐reversible one‐electron reduction followed by the very fast cleavage of either the endocyclic or exocyclic N–O bond. Subsequent electron transfer and protonation resulted in an overall two‐electron reduction and formation of the 2‐hydroxyaryl oxime and benzisoxazole. These results are analogous to those observed in the electrochemical reduction of other heterocyclic N‐oxides albeit the reduction of the benzisoxazole N‐oxides takes place at a more negative potential. However, these encouraging results warrant further investigation into the reduction potential of substituted benzisoxazole N‐oxides as well as to elucidate and characterize the nature of the intermediate species involved. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
The gas‐phase elimination of 2‐methyl‐2‐propenal catalyzed by HCl yields propene and CO gas, while E‐2‐pentenal with the same catalyst gives butene and CO gas. The kinetics determinations were carried out in a static system with the reaction vessels deactivated with allyl bromide and the presence of the free radical inhibitor toluene. Temperature and pressure ranges were 350.0–410.0 °C and 34–76 Torr. The elimination reactions are homogeneous and unimolecular, and follow a first‐order rate law. The rate coefficients for the reactions are expressible by the following Arrhenius equations: Data from the kinetic and thermodynamic parameters of these catalyzed elimination reactions implies a mechanism of a concerted five‐membered cyclic transition state structure for the formation of the corresponding olefin and carbon monoxide. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Nucleophilic substitution and dehydrochlorination reactions of a number of the ring‐substituted 1‐(arylsulfonyl)‐2‐R‐4‐chloro‐2‐butenes are studied both experimentally and theoretically. The developed synthetic procedures are characterized by a general rapidity, cheapness, and simplicity providing moderate to high yields of 1‐arylsulfonyl 1,3‐butadienes (48–95%), 1‐(arylsulfonyl)‐2‐R‐4‐(N,N‐dialkylamino)‐2‐butenes (31–53%), 1‐(arylsulfonyl)‐2‐R‐2‐buten‐4‐ols (37–61%), and bis[4‐(arylsulfonyl)‐3‐R‐but‐2‐enyl]sulfides (40–70%). The density functional theory B3LYP/6‐311++G(2d,2p) calculations of the intermediate allylic cations in acetone revealed their high stability occurring from a resonance stabilization and hyperconjugation by the SO2Ar group. The reactivity parameters estimated at the bond critical points of the diene/allylic moiety display a high correlation (R2 > 0.97) with the Hammett (σp) constants. 1‐Arylsulfonyl 1,3‐butadienes are characterized by a partly broken π conjugated system, which follows from analysis of the two‐centered delocalization (δ) and localization (λ) index values. The highest occupied molecular orbital energies of 1‐arylsulfonyl 1,3‐butadienes are lower than those of 1,3‐butadiene explaining their low reactivity towards the Diels–Alder condensation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Ethyl 2‐amino‐4,5,6,7‐tetrahydrobenzo[b]thiophene‐3‐carboxylate [C11H15NO2S] was synthesized by the Gewald method. Its single crystals were grown from an alcohol/ethyl acetate solution at 15 °C and characterized using IR and 1H‐NMR. These single crystals were irradiated for 72 h at 298 K by a 60Co gamma source with a dose speed of 0.864 kGy/h. After irradiation, electron spin resonance (ESR) measurements were carried out to study radiation‐induced radicals in the temperature range from 120 to 450 K. Additionally, for the single crystal, ESR angular dependencies were measured in the xy, xz and yz planes of the substance. This irradiated single crystal was analyzed based on the ESR spectra. Analysis of the spectra revealed that the radical was formed by a C–H bond fission at the carbon end of the substance. It was also observed that the color of the sample changed after irradiation. The hyperfine and g parameters were determined from the experimental spectra. It was inferred from these results that the hyperfine parameters and g value exhibited anisotropic behavior. The average values of these parameters were calculated as follows: g = 2.0088, AH1=H2 = 20.70 G, AH3=H4 = 10.80 G, AHa = 4.59 G, AHb = 3.24 G and, AN = 6.10 G. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
FTIR and FT Raman spectra of 2‐bromo‐4‐chloro phenol (BCP) and 2‐chloro‐4‐nitro phenol (CNP) were recorded in the region 4000–400 and 4000–50 cm−1, respectively. The molecular structure, geometry optimization, and vibrational wavenumbers were investigated. The spectra were interpreted with the aid of normal coordinate analysis based on density functional theory (DFT) using the standard B3LYP/6‐31G** method and basis set combination and was scaled using multiple scale factors, which yield good agreement between the observed and calculated wavenumbers. The results of the calculations are applied to simulate the infrared and Raman spectra of the title compounds, which showed excellent agreement with the observed spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
1,1,1‐Trichloro‐3‐(1‐phenethylamino‐ethylidene)‐pentane‐2,4‐dione is spectroscopically and structurally elucidated by means of linear‐polarized IR spectroscopy (IR‐LD) of oriented solids as a colloidal suspension in nematic liquid crystal. Structural information and IR‐spectroscopic assignment are supported by quantum chemical calculations at MP2 and B3LYP level of theory and 6‐311++G** basis set. The geometry is characterized with an inramolecular hydrogen bond of NHO?C with length of 2.526 Å and a NHO angle of 140.5(1)°. The NH? C(CH3)C?C? C?O(CH3) fragment is nearly flat with a maximal deviation of total planarity of 10.4°. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Experimental vibrational spectroscopic studies and density functional theory (DFT) calculations of the di‐amino acid peptide derivatives α‐ and β‐N‐acetyl‐L‐Asp‐L‐Glu have been undertaken. Raman and infrared spectra have been recorded for samples in the solid state. DFT simulations were conducted using the B3‐LYP correlation functional and the cc‐pVDZ basis set to determine energy minimized/geometry optimized structures (based on a single isolated molecule in the gaseous state). Normal coordinate calculations have provided vibrational assignments for fundamental modes, including their potential energy distributions. Significant differences are observed between α‐ and β‐N‐acetyl‐L‐Asp‐L‐Glu both in the computed structures and in the vibrational spectra. The combination of experimental and calculated spectra provide an insight into the structural and vibrational spectroscopic properties of di‐amino acid peptide derivatives. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
The photophysics of 3‐methyl‐3‐pentene‐2‐one (3M3P2O) after excitation to the S2(ππ*) electronic state were studied using the resonance Raman spectroscopy and complete active space self‐consistent field (CASSCF) method calculations. The A‐band resonance Raman spectra were obtained in cyclohexane, acetonitrile, and methanol with excitation wavelengths in resonance with the first intense absorption band to probe the structural dynamics of 3M3P2O. The B3LYP‐TD/6‐31++G(d, p) computation was carried out to determine the relative A‐band resonance Raman intensities of the fundamental modes, and the result was used to reproduce the corresponding fundamental band intensities of the 223.1 nm resonance Raman spectrum and thus to examine whether the vibronic‐coupling existed in Franck‐Condon region or not. CASSCF calculations were carried out to determine the minimal singlet excitation energies of S1, FC, S1,min (nπ*), S2, FC, S2,min (ππ*), the transition energies of the conical intersection points Sn/Sπ, Sn/S0, and the optimized excited state geometries as well as the geometry structures of the conical intersection points. The A‐band short‐time structural dynamics and the corresponding decay dynamics of 3M3P2O were obtained by the analysis of the resonance Raman intensity pattern and CASSCF computations. It was revealed that the initial structural dynamics of 3M3P2O was towards the simultaneous C3=C4 and C2=O7 bond elongation, with the C3=C4 bond length lengthening greater at the very beginning, whereas the C2=O7 bond length changing greater at the later evolution time before reaching the CI(S2/S1) conical intersection point. The decay dynamics from S2(ππ*) to S1(nπ*) via S2(ππ*)/S1(nπ*) in singlet realm and from S1(nπ*) to T1(nπ*) via ISC[S1(nπ*)/T2(ππ*)/T1(nπ*)] in triplet realm are proposed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
The first conformational analysis of 3‐silathiane and its C‐substituted derivatives, namely, 3,3‐dimethyl‐3‐silathiane 1 , 2,3,3‐trimethyl‐3‐silathiane 2 , and 2‐trimethylsilyl‐3,3‐dimethyl‐3‐silathiane 3 was performed by using dynamic NMR spectroscopy and B3LYP/6‐311G(d,p) quantum chemical calculations. From coalescence temperatures, ring inversion barriers ΔG for 1 and 2 were estimated to be 6.3 and 6.8 kcal/mol, respectively. These values are considerably lower than that of thiacyclohexane (9.4 kcal/mol) but slightly higher than the one of 1,1‐dimethylsilacyclohexane (5.5 kcal/mol). The conformational free energy for the methyl group in 2 (?ΔG° = 0.35 kcal/mol) derived from low‐temperature 13C NMR data is fairly consistent with the calculated value. For compound 2 , theoretical calculations give ΔE value close to zero for the equilibrium between the 2 ‐Meax and 2 ‐Meeq conformers. The calculated equatorial preference of the trimethylsilyl group in 3 is much more pronounced (?ΔG° = 1.8 kcal/mol) and the predominance of the 3 ‐SiMe3 eq conformer at room temperature was confirmed by the simulated 1H NMR and 2D NOESY spectra. The effect of the 2‐substituent on the structural parameters of 2 and 3 is discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Reaction of 3‐methyl‐2(1H)‐quinoxalinone ( 4) and 2(1H)‐quinoxalinone ( 5) with 5,6‐anhydro‐1,2‐O‐isopropylidene‐ α‐D ‐glucofuranose 6 gives the unexpected O‐glucoquinoxalines derivatives by the intermediary novel intramolecular rearrangement of 5,6‐anhydro‐1,2‐O‐isopropylidene‐α‐D ‐glucofuranose to the corresponding 3,6‐anhydro form. The obtained O‐glucoquinoxalines 7,8 were identified by NMR spectroscopy. The X‐ray crystal structures have been determined at room temperature. Moreover, a solid–solid phase transition has been detected at 198.9 K for O‐glucoquinoxalines 7 and the structure of the low‐temperature phase has been solved at 188 K. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Spectroscopic studies on excited‐state proton transfer of a new chromophore 2‐(2′‐benzofuryl)‐3‐hydroxychromone (BFHC) have been reported recently. In the present work, based on the time‐dependent density functional theory (TD‐DFT), the excited‐state intramolecular proton transfer (ESIPT) of BFHC is investigated theoretically. The calculated primary bond lengths and angles involved in hydrogen bond demonstrate that the intramolecular hydrogen bond is strengthened. In addition, the phenomenon of hydrogen bond reinforce has also been testified based on infrared (IR) vibrational spectra as well as the calculated hydrogen bonding energies. Further, hydrogen bonding strengthening manifests the tendency of excited state proton transfer. Our calculated results reproduced absorbance and fluorescence emission spectra of experiment, which verifies that the TD‐DFT theory we used is reasonable and effective. The calculated Frontier Molecular Orbitals (MOs) further demonstrate that the excited state proton transfer is likely to occur. According to the calculated results of potential energy curves along O―H coordinate, the potential energy barrier of about 14.5 kcal/mol is discovered in the S0 state. However, a lower potential energy barrier of 5.4 kcal/mol is found in the S1 state, which demonstrates that the proton transfer process is more likely to happen in the S1 state than the S0 state. In other words, the proton transfer reaction can be facilitated based on the photo‐excitation effectively. Moreover, the phenomenon of fluorescence quenching could be explained based on the ESIPT mechanism. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号