首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As distinguished from the conventional preparation of poly(aryl ether ketone)s utilizing 4,4′‐difluorobenzophenone, a novel synthetic method of high molecular weight poly(phthalazinone ether ketone) derived from 4,4′‐dichlorobenzophenone was studied. Reaction conditions to get high molecular weight polymer were investigated in details. Experimentally, sulfolane was chosen as the reaction media and high molecular weight polymer could be obtained in 7–8 hr at 210°C. The cyclic oligomers in the polymer product reduced to below 3.0% when the concentration of the reactant is 1.6–1.7 g/ml. Fourier transform infrared (FT‐IR), 1H NMR, and elemental analysis were used to confirm the structure of the obtained polymer. The amorphous polymer showed reasonable solubility in selective solvent, such as chloroform and N‐methyl‐2‐pyrrolidone, and tough, flexible, and transparent thin film can be readily prepared from their N‐methyl‐2‐pyrrolidone solution. The obtained polymer showed high glass transition temperature (Tg) up to 261°C detected by differential scanning calorimetry (DSC), and the temperature of 5% weight loss under nitrogen higher than 500°C detected by thermal gravimetric analysis (TGA), indicating its excellent thermal stability. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
An intercrosslinked network of bismaleimide modified polyurethane‐epoxy systems were prepared from the bismaleimide having ester linkages, polyurethane modified epoxy and cured in the presence of 4,4′‐diaminodiphenylmethane. Infrared spectral analysis was used to confirm the grafting of polyurethane into the epoxy skeleton. The prepared matrices were characterized by mechanical, thermal and morphological studies. The results obtained from the mechanical and thermal studies reveal that the incorporation of polyurethane into the epoxy skeleton increases the mechanical strength and decreases the glass transition temperature, thermal stability and heat distortion temperature. Whereas, the incorporation of bismaleimide having ester linkages into polyurethane modified epoxy systems increases the thermal stability, tensile and flexural properties and decreases the impact strength, glass transition temperature and heat distortion temperature. Surface morphology of polyurethane modified epoxy and bismaleimide modified polyurethane‐epoxy systems were studied using scanning electron microscopy. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
Synthesis and characterization of novel multifunctional epoxy resin   总被引:1,自引:0,他引:1  
A novel multifunctional epoxy resin was synthesized by polyphenol and epichlorohydrin.The structure and molecular weight ofthe multifunctional epoxy were characterized by FTIR and ESI-MS.DSC and DMTA were used to investigate the thermal propertyof multifunctional epoxy cured by DDS.The thermal resistance of the synthesized multifunctional epoxy was much better than astandard diglycidyl ether of bisphenol-A epoxy.  相似文献   

4.
《先进技术聚合物》2018,29(1):160-170
A trifunctional epoxy resin from itaconic acid (TEIA) was synthesized from a renewable resource‐based itaconic acid by allylation of itaconic acid to form diallyl itaconate by using m‐chloroperoxybenzoic acid as oxidizing agents followed by epoxidation of allylic C═C bond of diallyl itaconate methylhexahydropthalic anhydride as curing agent in the presence of 2‐methyl imidazole as a catalyst. The chemical structure of the synthesized resins was confirmed by Fourier transform infrared and nuclear magnetic resonance (1H‐NMR and 13C‐NMR) spectroscopy analysis. The mechanical, thermal, and rheological performances of the TEIA were also investigated and compared with diglycidyl ether of bisphenol A and a plant‐based epoxidized soybean oil bioresin cured with the same curing agent. The higher epoxy value of 1.02, lower viscosity (0.96 Pa s at 25°C), higher mechanical, and higher curing reactivity toward methylhexahydropthalic anhydride of TEIA as compared with epoxidized soybean oil and comparable with diglycidyl ether of bisphenol A demonstrated significant evidence to design and develop a novel bio‐based epoxy resin with high performance to substitute the petroleum‐based epoxy resin.  相似文献   

5.
Novel curing systems of a urethane/epoxy resin [diglycidyl ether of bisphenol A (DGEBA)] alloy using the moisture‐latent hardener ketimine (K‐systems) were investigated on the DGEBA‐rich side and were compared with aromatic diamine curing systems (A‐systems). Almost all the added DGEBA was separated from the polyurethane matrix and dispersed as 2–10‐μm‐diameter particles after curing in the A‐systems. Therefore, DGEBA did not act as a reinforcing agent for the polyurethane matrix. However, 50% of the added DGEBA was dispersed as particles with a diameter of 1–4 μm, and the other 50% was incorporated into the polyurethane matrix in the novel K‐systems. Therefore, the polyurethane matrix in the K‐systems should be reinforced effectively by both incorporated and finely dispersed DGEBA and should result in significant improvements in the stress–strain properties. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1137–1144, 2004  相似文献   

6.
In this paper, two silicon‐containing cycloaliphatic olefins were synthesized through the nucleophilic substitution reactions of cyclohex‐3‐enyl‐1‐methanol with di‐ or tri‐chlorosilane compounds. Then, after epoxidation, two new cycloaliphatic epoxy resins with different epoxy groups were successfully prepared. Their chemical structures were confirmed by 29Si NMR, 1H NMR, and Fourier‐transform infrared spectra (FTIR). The properties of cured products, including viscoelasticity, glass transition temperature (Tg), coefficient of thermal expansion, thermal stability and water absorption, were investigated. Compared to the difunctional epoxy resin, the trifunctional one exhibited a remarkably increased cross‐linking density from 0.82 to 4.08 × 10?3 mol/cm3 and Tg from 157 to 228°C. More importantly, prior to curing, they had viscosities of only 240–290 mPa sec at 25°C, which were much lower than that of ERL‐4221 (409 mPa sec), providing the possibility of easy processing. The high glass transition temperatures, good thermal stabilities, and mechanical properties as well as excellent flowability endow the silicon‐containing epoxy resins with promising potential in microelectronic packaging application. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Based on bio‐based furfural, a phosphorus‐containing curing agent (FPD) was successfully synthesized, via the addition reaction between 9,10‐dihydro‐9‐oxa‐10 phosphaphenanthrene‐10‐oxide (DOPO) and furfural‐derived Schiff base. Then, as co‐curing agent, FPD was used to prepare flame retardant epoxy thermosets (EP) cured by 4, 4′‐diaminodiphenyl methane. The incorporated FPD improved the flame retardancy and toughness of epoxy thermoset, simultaneously. When 5 wt% FPD was added into EP, the FPD/EP achieved 35.7% limited oxygen index (LOI) value and passed UL94 V‐0 rating, meanwhile. In FPD/EP thermoset, the incorporated FPD reduced the thermal decomposition rate, increased the charring capacity, and inhibited the combustion intensity of epoxy thermoset. Through gas‐phase and condensed‐phase actions in weakening fuel supply, suppressing volatile combustion, and enhancing charring barrier effect, FPD decreased the heat release of burning epoxy thermoset, significantly. For the outstanding effectiveness on both flame retardancy and toughness, the study on FPD provides a promising way to manufacture high‐performance epoxy thermoset.  相似文献   

8.
Isomeric tri‐aryl ketone amines, 1,3‐bis(3‐aminobenzoyl)benzene (133 BABB), 1,3‐bis(4‐aminobenzoyl)benzene (134 BABB), and 1,4‐bis(4‐aminobenzoyl)benzene (144 BABB) are synthesized and cured with diglycidyl ether of bisphenol A and diglycidyl ether of bisphenol F in this work. Differential scanning calorimetry and near‐infrared spectroscopy reveal higher rate constants and enhanced secondary amine conversion with increasing para substitution attributed to resonance effects and the electron withdrawing nature of the carbonyl linkages. Glass transition temperatures increase from 133 BABB to 134 BABB, but decrease modestly for the 144 BABB hardener. With increasing para substitution, the flexural modulus and strength both decrease while the strain to failure increases but all BABB amines displaying higher mechanical properties than the corresponding 4,4‐diaminodiphenyl sulfone (44 DDS) networks. The thermal stability of the BABB networks is found to be modestly lower than 44 DDS, but char yields are significantly higher. Changes in thermal and mechanical properties are described in terms of molecular structure and equilibrium packing density.  相似文献   

9.
This work deals with the toughening effect of flaky WS2 and fullerene‐like WS2 (IF‐WS2) nanoparticles on epoxy with varying network properties. Reducing the amount of curing agent resulted in decreased crosslink density as measured by dynamic‐mechanic analysis and double‐quantum nuclear magnetic resonance spectroscopy. Although that lead to moderate changes in the epoxy's tensile properties, its fracture toughness dropped drastically, probably due to an increased defect fraction. IF‐WS2 could be dispersed significantly more effectively within epoxy resin than flaky WS2, possibly due to its spherical shape, but caused less toughening. IF‐WS2 tended to debond from the epoxy, while flaky WS2 introduced more secondary cracks. Both increased the fracture toughness of the (brittle) substoichiometric, but not that of the (tough) stoichiometric epoxy, possibly due to their interaction with molecular defects. Irrespective of which mechanism resulted in the toughening effect, its effectiveness depended strongly on the epoxy matrix. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1738–1747  相似文献   

10.
A novel flame‐retardant epoxy resin, (4‐diethoxyphosphoryloxyphenoxy)(4‐glycidoxyphenoxy)cyclotriphosphazene (PPCTP), was prepared by the reaction of epichlorohydrin with (4‐diethoxyphosphoryloxyphenoxy)(4‐hydroxyphenoxy)cyclotriphosphazene and was characterized by Fourier transform infrared, 31P NMR, and 1H NMR analyses. The epoxy resin was further cured with diamine curing agents, 4,4′‐diaminodiphenylmethane (DDM), 4,4′‐diaminodiphenylsulfone (DDS), dicyanodiamide (DICY), and 3,4′‐oxydianiline (ODA), to obtain the corresponding epoxy polymers. The curing reactions of the PPCTP resin with the diamines were studied by differential scanning calorimetry. The reactivities of the four curing agents toward PPCTP were in the following order: DDM > ODA > DICY > DDS. In addition, the thermal properties of the cured epoxy polymers were studied by thermogravimetric analysis, and the flame retardancies were estimated by measurement of the limiting oxygen index (LOI). Compared to a corresponding Epon 828‐based epoxy polymer, the PPCTP‐based epoxy polymers showed lower weight‐loss temperatures, higher char yields, and higher LOI values, indicating that the epoxy resin prepared could be useful as a flame retardant. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 972–981, 2000  相似文献   

11.
The liquid oxygen compatible epoxy resin was obtained by the polycondensation between tetrabromobisphenol A and neat epoxy resins. The results of liquid oxygen impact test indicated that the synthetic epoxy resins were compatible with liquid oxygen. The relationship between impact reaction sensitivity (IRS) and flame retardancy were studied by liquid oxygen impact test and limiting oxygen index test. The results showed that the flame‐retardant modification of epoxy resin was valuable to reduce the IRS. The thermal gravimetric analysis results indicated that the Br · radical was quickly released in relatively low temperature (approximately 370°C) for compatible epoxy resin. The Br · radical was a key factor to promote the epoxy resin compatible with the liquid oxygen. The X‐ray photoelectron spectroscopy was used to survey the distribution of functional groups on the surface of samples before and after impact. The results showed that the oxidation reaction and carbonization process may occur on the surface of samples after impact. The liquid oxygen compatibility mechanism is proposed in this paper. The bromine‐containing epoxy resin has the potential to be the material used in liquid oxygen tank. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
An organophosphorus compound, 10-(2,5-dihydroxyl phenyl)-9, 10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DHPDOPO), was synthesized through the reaction of 9,10-dihydro-9-oxa-10-phosphaphnanthrene-10-oxide (DOPO) and p-benzoquinone, and characterized by elemental analysis, Fourier transform infrared spectrum (FTIR), and 1H-NMR and 31P-NMR spectroscopes. Consequently, the phosphorus-containing epoxy resins with phosphorus content of 1 and 2 wt.% were prepared via the reaction of diglycidyl ether of bisphenol-A with DHPDOPO and bisphenol-A, and confirmed with FTIR and gel permeation chromatography (GPC). Phenolic melamine, novolak, and dicyanodiamide (DICY) were used as curing agents to prepare the thermosetted resins with the control and the phosphorus-containing epoxy resins. Thermal properties and thermal degradation behaviors of these the thermosetted resins were investigated by using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Phenolic melamine-cured resins exhibited higher glass transition temperatures than the other cured resins due to the high rigidity of their molecular chain. TGA studies demonstrated that the decomposition temperatures of the novolak-cured resins were higher than those of the others. A synergistic effect from the combination of the phosphorus-containing epoxy resin and the nitrogen-containing curing agent can result in a great improvement of the flame retardance for their thermosetted resins.  相似文献   

13.
Poly(ether ether ketone) s with terminal propargyl groups (PEEK‐PR) were synthesized from hydroxyl terminated PEEK (PEEKTOH) and characterized. The heat‐triggered polymerization of PEEK‐PR to poly bischromenes having PEEK backbone was confirmed by Fourier transform infrared spectroscopy and differential scanning calorimetric studies. PEEK‐PR was blended with a bisphenol based epoxy resin‐diamino diphenylsulphone system in different proportions and cured to form PEEK‐bischromene‐interpenetrated‐epoxy‐amine networks. Tensile strength and elongation of the cured blends increased up to 10‐phr loading of PEEK‐PR and then declined. Tensile moduli of all formulations were comparable. Fracture toughness increased by a maximum of 33%, and the fractured surface morphology showed a ductile fracture. The blends exhibited slightly lower glass transition temperature to that of the neat epoxy‐amine system. A reference sample of epoxy‐amine was processed with the optimum loading of the precursor polymer, PEEKTOH, and compared its properties with the PEEK‐PR incorporated epoxy systems. In this way, it is found that the incorporation of addition curable propargylated PEEK increases the strength characteristics with adequate thermal stability and fracture toughness for high‐performance structural applications.  相似文献   

14.
In this report, a novel phosphorus/silicon‐containing reactive flame retardant, hexa(3‐triglycidyloxysilylpropyl)triphosphazene (HGPP), was synthesized and characterized by Fourier transform infrared spectrometry and nuclear magnetic resonance spectra (1H, 31P, and 29Si), respectively. To prepare cured epoxy, HGPP had been co‐cured with diglycidyl ether of bisphenol‐A (DGEBA) via 4,4‐diaminodiphenylsulfone as a curing agent. The mechanical, thermal, and flame retardant properties of the cured epoxy were evaluated by dynamic mechanical analysis, thermogravimetric analysis, and limiting oxygen index (LOI). According to these results, it could be found that incorporation of HGPP in the cured epoxy system showed good thermal stability, high LOI values, and high char yield at high temperature. As moderate loading of HGPP in the epoxy system, its storage modulus and glass transition temperature were higher than those of neat DGEBA. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Four sorts of epoxy resins containing degradable acetal linkages were synthesized by the reaction of bisphenol A (BA) or cresol novolak (CN) resin with vinyl ethers containing a glycidyl group [4‐vinlyoxybutyl glycidyl ether (VBGE) and cyclohexane dimethanol vinyl glycidyl ether (CHDMVG)] and cured with known typical amine‐curing agents. The thermal and mechanical properties of the cured resins were investigated. Among the four cured epoxy resins, the CN‐CHDMVG resin (derived from CN and CHDMVE) exhibited relatively high glass transition temperature (Tg = ca. 110 °C). The treatment of these cured epoxy resins with aqueous HCl in tetrahydrofuran (THF) at room temperature for 12 h generated BA and CN as degradation main products in high yield. Carbon fiber‐reinforced plastics (CFRPs) were prepared by heating the laminated prepreg sheets with BA‐CHDMVG (derived from BA and CHDMVE) and CN‐CHDMVG, in which strands of carbon fibers are impregnated with the epoxy resins containing conventional curing agents and curing accelerators. The obtained CFRPs showed good appearance and underwent smooth breakdown with the aqueous acid treatment in THF at room temperature for 24 h to produce strands of carbon fiber without damaging their surface conditions and tensile strength. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
A novel liquid‐crystalline epoxy resin combining biphenyl and aromatic ester‐type mesogenic units, diglycidyl ether of 4,4′‐bis(4‐hydroxybenzoyloxy)‐3,3′,5,5′‐tetramethyl biphenyl, was synthesized. Its spectroscopic structure, thermal properties, and phase structures were investigated with NMR, differential scanning calorimetry (DSC), and polarized light microscopy (PLM), respectively. The curing agent, diaminodiphenylsulfone, was chosen to investigate the curing behavior by means of DSC and PLM during isothermal and nonisothermal processes. Only one exothermal peak appeared in the isothermal DSC curves. Birefringence was also observed during the curing processes and preserved after postcuring. Compared with short rigid‐rod and flexible epoxies, the cured liquid‐crystalline epoxy resin that was obtained displayed special thermal stability according to thermogravimetric analysis because of its long rigid‐rod mesogenic unit and bulky methyl groups. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 727–735, 2007  相似文献   

17.
We synthesized a novel epoxy (dopotep) and cyanate ester (dopotcy) based on a phosphorus‐containing triphenol (dopotriol). The proposed structures were confirmed by IR, mass spectra, NMR spectra, and epoxy‐equivalent‐weight titration. The synthesized dopotep or dopotcy was copolymerized with diglycidyl ether of bisphenol A (DGEBA), 6′,6‐bis(3‐phenyl‐3,4‐dihydro‐2H‐1,3‐benzoxazineyl)methane (F‐a), or dicyanate ester of bisphenol A (BADCY). Thus, copolymers based on DGEBA/dopotep/diphenylmethane (ddm), F‐a/dopotep, BADCY/dopotcy, and DGEBA/dopotcy were developed. The thermal properties, dielectric properties, and flame retardancy of these copolymers were investigated. The curing kinetics of dopotep/ddm and dopotep/diamino diphenylsulfone were studied with differential scanning calorimetry. The microstructure of DGEBA/dopotcy was studied with IR. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3487–3502, 2006  相似文献   

18.
Microencapsulated ammonium polyphosphate with an epoxy resin (EP) shell (MCAPP) was prepared by in situ method, and was characterized by transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR), and thermgravimetric analysis (TGA). Compared to ammonium polyphosphate (APP), MCAPP has smaller particle sizes and lower water solubility. The effect of MCAPP on the fire performance of EP was studied by using limiting oxygen index (LOI) and UL‐94 tests. When the same loading levels of APP or MCAPP were added into EP, the LOI and UL‐94 tests show similar results. Tensile, bending, and impact strengths of the EP/APP and EP/MCAPP composites were also evaluated, and the results indicate that MCAPP has much less negative influence on the mechanical properties than APP. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
A new series of antibacterial and antifungal isatin bearing sulfonamides and their cobalt (II), copper (II), nickel (II) and zinc (II) metal complexes have been synthesized, characterized and screened for their in vitro antibacterial activity against Bacillus cereus, Corynebacterium diphtheriae, Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella typhi, Shigilla dysentriae and Staphylococcus aureus and for in vitro antifungal activity against Trichophyton schoenleinii, Candid glabrata, Pseudallescheria boydii, Candida albicans, Aspergillus niger, Microsporum canis and Trichophyton mentagrophytes. The results of these studies revealed that all compounds showed moderate to significant antibacterial activity. The brine shrimp bioassay was also carried out to study their in vitro cytotoxic properties. Only three compounds, 2, 11 and 22 displayed potent cytotoxic activity as LD50 = 1.56 × 10?7, 1.59 × 10?7 and 1.67 × 10?7 M /ml respectively, against Artemia salina. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Ternary nanocomposites are prepared by blending hydroxyl‐terminated poly ether ether ketone having pendant methyl groups (PEEKMOH) with epoxy resin along with Nanolin DK1, followed by curing with 4,4′‐diamino diphenyl sulphone. Differential scanning calorimetry shows a two‐stage cure behavior indicating the catalytic effect of the primary amine and proton, which are generated by the dissociation of organic modifier. Tensile and flexural moduli are increased while tensile strength and glass transition temperature are decreased with increase in clay concentration. Fracture toughness and strain at break are increased by 59 and 62%, respectively, with 1 phr clay loading. Transition electron microscopy and X‐ray diffraction (XRD) analysis reveal exfoliated morphology for the nanocomposites. Scanning electron micrographs show a decrease in both, domain size as well as inter domain distance of the thermoplastic phase with the addition of clay, indicating the occurrence of gelation before phase separation. Analysis of the fracture surface reveals crack path deflection and ductile fracture behavior, confirming that toughness has been improved with the addition of clay and PEEKMOH. Coefficient of thermal expansion (CTE) of the nanocomposites is decreased up to 3 phr clay loading. Oxygen gas permeability is compared with Bharadwaj's and Neilson's models. A marginal improvement in thermal stability is observed with the addition of clay. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号