首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider random graphs with a given degree sequence and show, under weak technical conditions, asymptotic normality of the number of components isomorphic to a given tree, first for the random multigraph given by the configuration model and then, by a conditioning argument, for the simple uniform random graph with the given degree sequence. Such conditioning is standard for convergence in probability, but much less straightforward for convergence in distribution as here. The proof uses the method of moments, and is based on a new estimate of mixed cumulants in a case of weakly dependent variables. The result on small components is applied to give a new proof of a recent result by Barbour and Röllin on asymptotic normality of the size of the giant component in the random multigraph; moreover, we extend this to the random simple graph.  相似文献   

2.
The configuration model is the most natural model to generate a random multigraph with a given degree sequence. We use the notion of dense graph limits to characterize the special form of limit objects of convergent sequences of configuration models. We apply these results to calculate the limit object corresponding to the dense preferential attachment graph and the edge reconnecting model. Our main tools in doing so are (1) the relation between the theory of graph limits and that of partially exchangeable random arrays (2) an explicit construction of our random graphs that uses urn models.  相似文献   

3.
We provide an explicit algorithm for sampling a uniform simple connected random graph with a given degree sequence. By products of this central result include: (1) continuum scaling limits of uniform simple connected graphs with given degree sequence and asymptotics for the number of simple connected graphs with given degree sequence under some regularity conditions, and (2) scaling limits for the metric space structure of the maximal components in the critical regime of both the configuration model and the uniform simple random graph model with prescribed degree sequence under finite third moment assumption on the degree sequence. As a substantive application we answer a question raised by ?erný and Teixeira study by obtaining the metric space scaling limit of maximal components in the vacant set left by random walks on random regular graphs.  相似文献   

4.
We revisit the problem of counting the number of copies of a fixed graph in a random graph or multigraph, for various models of random (multi)graphs. For our proofs we introduce the notion of patchworks to describe the possible overlappings of copies of subgraphs. Furthermore, the proofs are based on analytic combinatorics to carry out asymptotic computations. The flexibility of our approach allows us to tackle a wide range of problems. We obtain the asymptotic number and the limiting distribution of the number of subgraphs which are isomorphic to a graph from a given set of graphs. The results apply to multigraphs as well as to (multi)graphs with degree constraints. One application is to scale-free multigraphs, where the degree distribution follows a power law, for which we show how to obtain the asymptotic number of copies of a given subgraph and give as an illustration the expected number of small cycles.  相似文献   

5.
We study the growth of two competing infection types on graphs generated by the configuration model with a given degree sequence. Starting from two vertices chosen uniformly at random, the infection types spread via the edges in the graph in that an uninfected vertex becomes type 1 (2) infected at rate λ1 (λ2) times the number of nearest neighbors of type 1 (2). Assuming (essentially) that the degree of a randomly chosen vertex has finite second moment, we show that if λ1 = λ2, then the fraction of vertices that are ultimately infected by type 1 converges to a continuous random variable V ∈ (0,1), as the number of vertices tends to infinity. Both infection types hence occupy a positive (random) fraction of the vertices. If λ1λ2, on the other hand, then the type with the larger intensity occupies all but a vanishing fraction of the vertices. Our results apply also to a uniformly chosen simple graph with the given degree sequence.  相似文献   

6.
Let s and t be vectors of positive integers with the same sum. We study the uniform distribution on the space of simple bipartite graphs with degree sequence s in one part and t in the other; equivalently, binary matrices with row sums s and column sums t . In particular, we find precise formulae for the probabilities that a given bipartite graph is edge‐disjoint from, a subgraph of, or an induced subgraph of a random graph in the class. We also give similar formulae for the uniform distribution on the set of simple directed graphs with out‐degrees s and in‐degrees t . In each case, the graphs or digraphs are required to be sufficiently dense, with the degrees varying within certain limits, and the subgraphs are required to be sufficiently sparse. Previous results were restricted to spaces of sparse graphs. Our theorems are based on an enumeration of bipartite graphs avoiding a given set of edges, proved by multidimensional complex integration. As a sample application, we determine the expected permanent of a random binary matrix with row sums s and column sums t . © 2009 Wiley Periodicals, Inc. Random Struct. Alg., 2009  相似文献   

7.
We analyse the size of an independent set in a random graph on n vertices with specified vertex degrees, constructed via a simple greedy algorithm: order the vertices arbitrarily, and, for each vertex in turn, place it in the independent set unless it is adjacent to some vertex already chosen. We find the limit of the expected proportion of vertices in the greedy independent set as (the jamming constant), expressed as an integral whose upper limit is defined implicitly, valid whenever the second moment of a random vertex degree is uniformly bounded. We further show that the random proportion of vertices in the independent set converges in probability to the jamming constant as . The results hold under weaker assumptions in a random multigraph with given degrees constructed via the configuration model. © 2017 Wiley Periodicals, Inc. Random Struct. Alg., 51, 565–586, 2017  相似文献   

8.
Abstract. We describe a set of necessary conditions for a given graph to be the visibility graph of a simple polygon. For every graph satisfying these conditions we show that a uniform rank 3 oriented matroid can be constructed in polynomial time, which if affinely coordinatizable yields a simple polygon whose visibility graph is isomorphic to the given graph.  相似文献   

9.
   Abstract. We describe a set of necessary conditions for a given graph to be the visibility graph of a simple polygon. For every graph satisfying these conditions we show that a uniform rank 3 oriented matroid can be constructed in polynomial time, which if affinely coordinatizable yields a simple polygon whose visibility graph is isomorphic to the given graph.  相似文献   

10.
By Petersen's theorem, a bridgeless cubic multigraph has a 2-factor. Fleischner generalised this result to bridgeless multigraphs of minimum degree at least three by showing that every such multigraph has a spanning even subgraph. Our main result is that every bridgeless simple graph with minimum degree at least three has a spanning even subgraph in which every component has at least four vertices. We deduce that if G is a simple bridgeless graph with n vertices and minimum degree at least three, then its line graph has a 2-factor with at most max{1,(3n-4)/10} components. This upper bound is best possible.  相似文献   

11.
This note can be treated as a supplement to a paper written by Bollobas which was devoted to the vertices of a given degree in a random graph. We determine some values of the edge probability p for which the number of vertices of a given degree of a random graph G ∈ ??(n, p) asymptotically has a normal distribution.  相似文献   

12.
We study the largest component of a random (multi)graph on n vertices with a given degree sequence. We let n. Then, under some regularity conditions on the degree sequences, we give conditions on the asymptotic shape of the degree sequence that imply that with high probability all the components are small, and other conditions that imply that with high probability there is a giant component and the sizes of its vertex and edge sets satisfy a law of large numbers; under suitable assumptions these are the only two possibilities. In particular, we recover the results by Molloy and Reed on the size of the largest component in a random graph with a given degree sequence. We further obtain a new sharp result for the giant component just above the threshold, generalizing the case of G(n,p) with np = 1 + ω(n)n?1/3, where ω(n) → arbitrarily slowly. Our method is based on the properties of empirical distributions of independent random variables, and leads to simple proofs. © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 2009  相似文献   

13.
We study a family of directed random graphs whose arcs are sampled independently of each other, and are present in the graph with a probability that depends on the attributes of the vertices involved. In particular, this family of models includes as special cases the directed versions of the Erd?s‐Rényi model, graphs with given expected degrees, the generalized random graph, and the Poissonian random graph. We establish a phase transition for the existence of a giant strongly connected component and provide some other basic properties, including the limiting joint distribution of the degrees and the mean number of arcs. In particular, we show that by choosing the joint distribution of the vertex attributes according to a multivariate regularly varying distribution, one can obtain scale‐free graphs with arbitrary in‐degree/out‐degree dependence.  相似文献   

14.
We study the asymptotic behavior of uniform random maps with a prescribed face‐degree sequence, in the bipartite case, as the number of faces tends to infinity. Under mild assumptions, we show that, properly rescaled, such maps converge in distribution toward the Brownian map in the Gromov–Hausdorff sense. This result encompasses a previous one of Le Gall for uniform random q‐angulations where q is an even integer. It applies also to random maps sampled from a Boltzmann distribution, under a second moment assumption only, conditioned to be large in either of the sense of the number of edges, vertices, or faces. The proof relies on the convergence of so‐called “discrete snakes” obtained by adding spatial positions to the nodes of uniform random plane trees with a prescribed child sequence recently studied by Broutin and Marckert. This paper can alternatively be seen as a contribution to the study of the geometry of such trees.  相似文献   

15.
In this paper we describe a simple model for random graphs that have an n-fold covering map onto a fixed finite base graph. Roughly, given a base graph G and an integer n, we form a random graph by replacing each vertex of G by a set of n vertices, and joining these sets by random matchings whenever the corresponding vertices are adjacent in G. The resulting graph covers the original graph in the sense that the two are locally isomorphic. We suggest possible applications of the model, such as constructing graphs with extremal properties in a more controlled fashion than offered by the standard random models, and also "randomizing" given graphs. The main specific result that we prove here (Theorem 1) is that if is the smallest vertex degree in G, then almost all n-covers of G are -connected. In subsequent papers we will address other graph properties, such as girth, expansion and chromatic number. Received June 21, 1999/Revised November 16, 2000 RID="*" ID="*" Work supported in part by grants from the Israel Academy of Aciences and the Binational Israel-US Science Foundation.  相似文献   

16.
一类无标度随机图的度序列   总被引:1,自引:0,他引:1  
本文从-个新的角度对-类随机图的度序列进行了分析.证明了此模型度分布的存在性,得到了网络规模比较大的情况下度为七的节点所占比例数的表达式.此外,我们还将模型扩展到每个时间步增加边数为随机变量的情形,得到了类似的结论.  相似文献   

17.
The local structure of undirected multigraphs under two random multigraph models is analyzed and compared. The first model generates multigraphs by randomly coupling pairs of stubs according to a fixed degree sequence so that edge assignments to vertex pair sites are dependent. The second model is a simplification that ignores the dependency between the edge assignments. It is investigated when this ignorance is justified so that the simplified model can be used as an approximation, thus facilitating the structural analysis of network data with multiple relations and loops. The comparison is based on the local properties of multigraphs given by marginal distribution of edge multiplicities and some local properties that are aggregations of global properties.  相似文献   

18.
In this paper the authors generalize the classic random bipartite graph model, and define a model of the random bipartite multigraphs as follows:let m = m(n) be a positive integer-valued function on n and ζ(n,m;{pk}) the probability space consisting of all the labeled bipartite multigraphs with two vertex sets A ={a1,a2,...,an} and B = {b1,b2,...,bm}, in which the numbers tai,bj of the edges between any two vertices ai∈A and bj∈ B are identically distributed independent random variables with distribution P{tai,bj=k}=pk,k=0,1,2,...,where pk ≥0 and ∞Σk=0 pk=1. They obtain that Xc,d,A, the number of vertices in A with degree between c and d of Gn,m∈ζ(n, m;{pk}) has asymptotically Poisson distribution, and answer the following two questions about the space ζ(n,m;{pk}) with {pk} having geometric distribution, binomial distribution and Poisson distribution, respectively. Under which condition for {pk} can there be a function D(n) such that almost every random multigraph Gn,m∈ζ(n,m;{pk}) has maximum degree D(n)in A? under which condition for {pk} has almost every multigraph G(n,m)∈ζ(n,m;{pk}) a unique vertex of maximum degree in A?  相似文献   

19.
In this paper, we propose an evolving random network. The model is a linear combination of preferential attachment model and uniform model. We show that scaling limit distribution of the number of leaves at time $n$ is approximated by normal distribution and the proportional degree sequence obeys power law. The branching structure and maximum degree are also discussed in this paper.  相似文献   

20.
In the on‐line nearest‐neighbor graph (ONG), each point after the first in a sequence of points in ?d is joined by an edge to its nearest neighbor amongst those points that precede it in the sequence. We study the large‐sample asymptotic behavior of the total power‐weighted length of the ONG on uniform random points in (0,1)d. In particular, for d = 1 and weight exponent α > 1/2, the limiting distribution of the centered total weight is characterized by a distributional fixed‐point equation. As an ancillary result, we give exact expressions for the expectation and variance of the standard nearest‐neighbor (directed) graph on uniform random points in the unit interval. © 2007 Wiley Periodicals, Inc. Random Struct. Alg., 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号