首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2,4,6‐Tris(pyridin‐4‐yl)‐1,3,5‐triazine (tpt), as an organic molecule with an electron‐deficient nature, has attracted considerable interest because of its photoinduced electron transfer from neutral organic molecules to form stable anionic radicals. This makes it an excellent candidate as an organic linker in the construction of photochromic complexes. Such a photochromic three‐dimensional (3D) metal–organic framework (MOF) has been prepared using this ligand. Crystallization of tpt with Cd(NO3)2·4H2O in an N,N‐dimethylacetamide–methanol mixed‐solvent system under solvothermal conditions afforded the 3D MOF poly[[bis(nitrato‐κ2O,O′)cadmium(II)]‐μ3‐2,4,6‐tris(pyridin‐4‐yl)‐1,3,5‐triazine‐κ3N2:N4:N6], [Cd(NO3)2(C18H12N6)]n, which was characterized by IR spectroscopy, elemental analysis, thermogravimetric analysis and single‐crystal X‐ray diffraction. The X‐ray diffraction crystal structure analysis reveals that the asymmetric unit contains one independent CdII cation, one tpt ligand and two coordinated NO3? anions. The CdII cations are connected by tpt ligands to generate a 3D framework. The single framework leaves voids that are filled by mutual interpenetration of three independent equivalent frameworks in a fourfold interpenetrating architecture. The compound shows a good thermal stability and exhibits a reversible photochromic behaviour, which may originate from the photoinduced electron‐transfer generation of radicals in the tpt ligand.  相似文献   

2.
Contamination of industrial sewage by organic dye pollutants is one of the most common challenges to the daily life. Decontamination can be achieved by adsorption and photodegradation of the pollutants. Herein, an effective visible light‐driven photocatalyst of polyoxometalate encapsulated in metal–organic gel was presented. The resulting composite was named PMA@ MOG‐Cr [PMA= H3PMo12O40, MOG= metal‐organic gel]. Photodegradation of dye pollutants with PMA@ MOG‐Cr were tested. The introduction of Phosphomolybdic Acid significantly enhanced the light‐absorption properties of MOG‐Cr. The PMA@MOG‐Cr showed an excellent photodegradation efficiency of MB, RhB and MO as high as 99% and 97% in 60 min and 91% in 120 min of visible‐light irradiation with only 10 mg photocatalyst, which was the highest among the tested samples MOG‐Cr, PMA@ MOG‐Cr and Degussa P‐25. The mechanism of the photodegradation of dye pollutants with H2O2 over PMA@MOG‐Cr under the visible light was further illustrated. The introduction of PMA promotes effective separation of electron–hole pair by trapping and transferring photogenerated electron. Thus, the two components act in synergy to result in much improved adsorption of certain common organic dyes as well as enhanced oxidative degradation. This work provides a new approach to design MOG encapsulated Polyoxometalate for visible light‐induced photodegradation of organic contaminants for the environmental remediation.  相似文献   

3.
The crystal structures of two new bimetallic uranyl–transition metal compounds with diglycolic acid [or 2‐(carboxymethoxy)acetic acid] have been hydrothermally synthesized and structurally characterized via single‐crystal X‐ray diffraction. The compounds, namely catena‐poly[[[tetraaquamanganese(II)]‐μ‐2,2′‐oxydiacetato‐[dioxidouranium(VI)]‐μ‐2,2′‐oxydiacetato] dihydrate], {[MnU(C4H4O5)2O2(H2O)4]·2H2O}n , and catena‐poly[[[tetraaquacobalt(II)]‐μ‐2,2′‐oxydiacetato‐[dioxidouranium(VI)]‐μ‐2,2′‐oxydiacetato] dihydrate], {[CoU(C4H4O5)2O2(H2O)4]·2H2O}n , both crystallize in the triclinic space group P . These compounds form one‐dimensional chains via alternating uranyl and transition metal building units. The chains then assemble into three‐dimensional supramolecular networks through several hydrogen bonds between water molecules and diglycolate ligands. Luminescence measurements were conducted and no uranyl emission was observed in either compound.  相似文献   

4.
A terbium–organic framework (Tb‐MOF) was prepared using a previously reported procedure. Tb‐MOF was characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, powder X‐ray diffraction and surface area analysis. Tb‐MOF was employed as a heterogeneous Lewis acid catalyst for the synthesis of β‐aminoalcohols. Also, the effect of ultrasonic irradiation was examined in the catalytic aminolysis of styrene oxide. The reaction conditions were optimized by variation of reaction time, catalyst concentration and solvent. A variety of β‐aminoalcohols were synthesized and characterized. The Tb‐MOF catalyst showed excellent selectivity and high yield for these transformations.  相似文献   

5.
A Zr‐based metal–organic framework with bipyridine units (UiO‐67) has been utilized for the immobilization of catalytically active iron species via a post‐synthetic metalation method. UiO‐67 bipyridine MOF was synthesized through a simple solvothermal method and was shown to have a UiO‐type structure. Post‐synthetic metalation of UiO‐67 MOF was performed for the immobilization of the catalytically active FeCl3. FT‐IR and EDX element map suggested that FeCl3 is coordinately bonded to the UiO‐67 bipyridine framework. The synthesized UiO‐67‐FeCl3 catalyst was used for the aerobic oxidation of alcohols and benzylic compounds in the presence of molecular oxygen. In addition, the UiO‐67‐FeCl3 catalyst can be reused as a solid heterogeneous catalyst without compromising its activity and selectivity.  相似文献   

6.
采用1,4-二(1-H-苯并咪唑基)丁烷 (bbbi) 与CoSO4•7H2O反应得到一个结构新颖的金属—有机多聚物[Co(bbbi)1.5(SO4)]n1. 在多聚物1中,中心离子Co(II)通过配体bbbi桥连在一起形成一个含有反三棱柱结构单元的二维层状结构. 每个反三棱柱结构单元由六个bbbi配体和六个Co(II)离子组成. 通过热分析我们发现,该化合物在147 oC以下是稳定的,若继续升温则被氧化并在787 oC时分解为 Co2O3,升温至914 oC时最终残余物为CoO。  相似文献   

7.
Over the past two decades, the development of novel inorganic–organic hybrid porous crystalline materials or metal–organic frameworks (MOFs) using crystal engineering has provoked significant interest due to their potential applications as functional materials. In this context, luminescent MOFs as fluorescence sensors have recently received significant attention for the sensing of ionic species and small molecules. In this work, a new luminescent heterometallic zinc(II)–barium(II)‐based anionic metal–organic framework, namely poly[imidazolium [triaqua(μ6‐benzene‐1,3,5‐tricarboxylato)bariumtrizinc] tetrahydrate], {(C3H4N2)[BaZn3(C9H3O6)3(H2O)3]·4H2O}n ( 1 ), was synthesized under hydrothermal conditions and characterized. Compound 1 presents a three‐dimensional framework with an unprecedented (3,5)‐connected topology of the point symbol (3.92).(33.42.5.93.10), and exhibits `turn‐off' luminescence responses for the Cu2+ and Fe3+ ions in aqueous solution based on significantly different quenching mechanisms.  相似文献   

8.
In this study, a Zr metal–organic framework (UIO‐66) was synthesized with zirconium tetrachloride and terephthalic acid using the solvent method. Then various masses of 1‐methylimidazolium‐3‐propylsulfonate hydrosulfate (PSMIMHSO4) were supported on the UIO‐66 as catalysts, which were used for catalytic oxidative desulfurization. Sulfur removal using 400 mg of 40% PSMIMHSO4 supported on the UIO‐66 of greater than 94% was obtained at 313 K for 20 min with an O/S molar ratio of 7:1. The results obtained in this work could provide useful information for the design of water‐stable metal–organic frameworks with permanent porosity in applications of catalytic oxidative desulfurization. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
With the rapid development of metal–organic frameworks (MOFs), a variety of MOFs and their derivatives have been synthesized and reported in recent years. Commonly, multifunctional aromatic polycarboxylic acids and nitrogen‐containing ligands are employed to construct MOFs with fascinating structures. 4,4′,4′′‐(1,3,5‐Triazine‐2,4,6‐triyl)tribenzoic acid (H3TATB) and the bidentate nitrogen‐containing ligand 1,3‐bis[(imidazol‐1‐yl)methyl]benzene (bib) were selected to prepare a novel ZnII‐MOF under solvothermal conditions, namely poly[[tris{μ‐1,3‐bis[(imidazol‐1‐yl)methyl]benzene}bis[μ3‐4,4′,4′′‐(1,3,5‐triazine‐2,4,6‐triyl)tribenzoato]trizinc(II)] dimethylformamide disolvate trihydrate], {[Zn3(C24H12N3O6)2(C14H14N4)3]·2C3H7NO·3H2O}n ( 1 ). The structure of 1 was characterized by single‐crystal X‐ray diffraction, IR spectroscopy and powder X‐ray diffraction. The properties of 1 were investigated by thermogravimetric and fluorescence analysis. Single‐crystal X‐ray diffraction shows that 1 belongs to the monoclinic space group Pc. The asymmetric unit contains three crystallographically independent ZnII centres, two 4,4′,4′′‐(1,3,5‐triazine‐2,4,6‐triyl)tribenzoate (TATB3?) anions, three complete bib ligands, one and a half free dimethylformamide molecules and three guest water molecules. Each ZnII centre is four‐coordinated and displays a distorted tetrahedral coordination geometry. The ZnII centres are connected by TATB3? anions to form an angled ladder chain with large windows. Simultaneously, the bib ligands link ZnII centres to give a helical Zn–bib–Zn chain. Furthermore, adjacent ladders are bridged by Zn–bib–Zn chains to form a fascinating three‐dimensional self‐penetrated framework with the short Schläfli symbol 65·7·813·9·10. In addition, the luminescence properties of 1 in the solid state and the fluorescence sensing of metal ions in suspension were studied. Significantly, compound 1 shows potential application as a fluorescent sensor with sensing properties for Zr4+ and Cu2+ ions.  相似文献   

10.
A polydentate ligand bridged by a fluorene group, namely 9,9‐bis(2‐hydroxyethyl)‐2,7‐bis(pyridin‐4‐yl)fluorene (L), has been prepared under solvothermal conditions in acetonitrile. Crystals of the three‐dimensional metal–organic framework (MOF) poly[[[μ3‐9,9‐bis(2‐hydroxyethyl)‐2,7‐bis(pyridin‐4‐yl)fluorene‐κ3N:N′:O]bis(methanol‐κO)(μ‐sulfato‐κ2O:O′)nickel(II)] methanol disolvate], {[Ni(SO4)(C27H24N2O2)(CH3OH)]·2CH3OH}n, (I), were obtained by the solvothermal reaction of L and NiSO4 in methanol. The ligand L forms a two‐dimensional network in the crystallographic bc plane via two groups of O—H…N hydrogen bonds and neighbouring two‐dimensional planes are completely parallel and stack to form a three‐dimensional structure. In (I), the NiII ions are linked by sulfate ions through Ni—O bonds to form inorganic chains and these Ni‐containing chains are linked into a three‐dimensional framework via Ni—O and Ni—N bonds involving the polydentate ligand L. With one of the hydroxy groups of L coordinating to the NiII atom, the torsion angle of the hydroxyethyl group changes from that of the uncoordinated molecule. In addition, the adsorption properties of (I) with carbon dioxide were investigated.  相似文献   

11.
The design and synthesis of coordination polymers (CPs) have attracted much interest due to the intriguing diversity of their architectures and topologies. The functional solid catena‐poly[μ2‐aqua‐triaqua{μ4‐5‐[4‐carboxyphenoxy)methyl]benzene‐1,3‐dicarboxylato}{μ3‐5‐[4‐carboxyphenoxy)methyl]benzene‐1,3‐dicarboxylato}dicobalt(II)], [Co2(C16H10O7)2(H2O)4]n or [Co2(HL)22‐H2O)(H2O)3]n, was synthesized successfully by self‐assembly of CoII ions with 5‐[(4‐carboxyphenoxy)methyl]isophthalic acid (H3L). The title compound was obtained under hydrothermal conditions and exhibits a twofold interpenetrated three‐dimensional skeleton with hms 3,5‐conn topology according to the cluster representation for valence‐bonded metal–organic frameworks (MOFs). It has been characterized by single‐crystal X‐ray diffraction, IR spectroscopy, powder X‐ray diffraction (PXRD), thermogravimetric analysis and susceptibility measurements. The antiferromagnetic coupling between adjacent CoII centres occurs via superexchange through the ligands.  相似文献   

12.
Many factors, such as temperature, solvent, the central metal atom and the type of coligands, may affect the nature of metal–organic frameworks (MOFs) and the framework formation in the self‐assembly process, which results in the complexity of these compounds and the uncertainty of their structures. Two new isomeric ZnII metal–organic frameworks (MOFs) based on mixed ligands, namely, poly[[μ‐1,5‐bis(2‐methyl‐1H‐imidazol‐1‐yl)pentane‐κ2N 3:N 3′](μ‐5‐methylisophthalato‐κ2O 1:O 3)zinc(II)], [Zn(C9H6O4)(C13H20N4)]n , (I), and poly[[μ‐1,5‐bis(2‐methyl‐1H‐imidazol‐1‐yl)pentane‐κ2N 3:N 3′](μ3‐5‐methylisophthalato‐κ3O 1:O 1′:O 3)(μ3‐5‐methylisophthalato‐κ4O 1:O 1′:O 3,O 3′)dizinc(II)], [Zn2(C9H6O4)2(C13H20N4)]n , (II), have been synthesized under hydrothermal conditions and characterized by single‐crystal X‐ray diffraction, IR spectroscopy, elemental analysis and thermogravimetric analysis. Complex (I) displays a two‐dimensional layer net, while complex (II) exhibits a twofold interpenetrating three‐dimensional framework. Both complexes show high stability and good fluorescence in the solid state at room temperature.  相似文献   

13.
With [5,10,15,20‐tetra(4‐carboxyphenyl)porphyrin]Mn(III) and sterically controlled 2,2¢‐dimethyl‐4,4¢‐pyridine as the main raw materials, metal–organic framework thin films containing metalloporphyrin (MnPor‐MOF) with catalytically active sites were built up on functionalized quartz glass surfaces using a layer‐by‐layer self‐assembly method. Retaining active catalytic sites and having a porous reticular structure, the MnPor‐MOF films possessed remarkable photocatalytic activity for oxidative degradation of methylene blue in the presence of hydrogen peroxide under visible‐light irradiation. Most meaningfully, the MnPor‐MOF films were highly stable and simply and conveniently reusable, and are thus a potentially new organic material for photocatalytic wastewater treatment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Photocatalysis is a green technology for the treatment of all kinds of contaminants and has advantages over other treatment methods. Recently, much effort has been devoted to developing new photocatalytic materials based on metal–organic frameworks for use in the degradation of many kinds of organic contaminants. With the aim of searching for more effective photocatalysts, the title three‐dimensional coordination polymer, [Cd2(C8H4O4)2(C18H16N2O2)]n, was prepared. The asymmetric unit contains one CdII cation, one benzene‐1,2‐dicarboxylate anion (denoted L2−) and half of a centrosymmetric 1,4‐bis(pyridin‐3‐ylmethoxy)benzene ligand (denoted bpmb). Each CdII centre is five‐coordinated by four carboxylate O atoms from two L2− ligands and by one N atom from a bpmb ligand, forming a disordered pentagonal pyramidal coordination geometry. The CdII centres are interlinked by L2− ligands to form a one‐dimensional [Cd2L2]n chain. Adjacent chains are further connected by bpmb linkers, giving rise to a two‐dimensional network, and these networks are pillared by bpmb to afford a three‐dimensional framework with a 33.42.63.71.81 topology. Each grid in the framework has large channels which are filled mainly by the two other equivalent frameworks to form a threefold interpenetrating net. The compound exhibits relatively good photocatalytic activity towards the degradation of methylene blue in aqueous solution under UV irradiation.  相似文献   

15.
A novel neutral polymer, {[Co2(C7H3NO4)2(H2O)4]·2H2O}n, was hydrothermally synthesized using pyridine‐2,5‐dicarboxylate (2,5‐PDC2−) as the organic linker. It features a two‐dimensional layer structure constructed from one‐dimensional {[Co(2,5‐PDC)2]2−}n chains interlinked by [Co(H2O)4]+ units. The two CoII cations occupy special positions, sitting on inversion centres. Each 2,5‐PDC2− anion chelates to one CoII cation via the pyridine N atom and an O atom of the adjacent carboxylate group, and links to two other CoII cations in a bridging mode via the O atoms of the other carboxylate group. In this way, the 2,5‐PDC2− ligand connects three neighbouring CoII centres to form a two‐dimensional network. The two‐dimensional undulating layers are linked by extensive hydrogen bonds to form a three‐dimensional supramolecular structure, with the uncoordinated solvent molecules occupying the interlamellar region.  相似文献   

16.
A metal–organic framework with a novel topology, poly[sesqui(μ2‐4,4′‐bipyridine)bis(dimethylformamide)bis(μ4‐4,4′,4′′‐nitrilotribenzoato)trizinc(II)], [Zn3(C21H12NO6)2(C10H8N2)1.5(C3H7NO)2]n, was obtained by the solvothermal method using 4,4′,4′′‐nitrilotribenzoic acid and 4,4′‐bipyridine (bipy). The structure, determined by single‐crystal X‐ray diffraction analysis, possesses three kinds of crystallographically independent ZnII cations, as well as binuclear Zn2(COO)4(bipy)2 paddle‐wheel clusters, and can be reduced to a novel topology of a (3,3,6)‐connected 3‐nodal net, with the Schläfli symbol {5.62}4{52.6}4{58.87} according to the topological analysis.  相似文献   

17.
A series of homo‐ and hetero‐trinuclear cobalt(II) complexes [Co3(L)(OAc)2(CH3CH2OH)(H2O)] ( 1 ), [Co2Ba(L)(OAc)2] ( 2 ) and [Co2Ca(L)(OAc)2]·CHCl3 ( 3 ), containing an acyclic naphthalenediol‐based ligand H4L were synthesized. All the three complexes were characterized by elemental analyses, IR, UV – vis spectra and single crystal X‐ray diffraction analyses. Comparative studies of the structures and spectroscopic properties are carried out on these complexes. All of the complexes show catechol oxidase activities in MeCN. Using UV – vis spectroscopy, we monitored the aerial oxidation of 3,5‐di‐tert ‐butylcatechol (3,5‐DTBCH2) to 3,5‐di‐tert ‐butylquinone (3,5‐DTBQ), which confirms the essential role of these complexes in enhancing the catalytic reaction.  相似文献   

18.
A heterogeneous catalyst was synthesized by encapsulation of a Keggin‐type heteropolytungstate, potassium dodecatungstocobaltate trihydrate, K5[CoW12O40]·(Co‐POM), into chromium(III) terephthalate (MIL‐101). Encapsulation was achieved via a ‘build bottle around ship’ strategy in aqueous media, following a hydrothermal method. The structure of the resulting crystalline solid was characterized using X‐ray diffraction, correlated with Fourier transform infrared and UV–visible spectroscopy. The metal content was analysed using optical emission spectroscopy. Transmission electron microscopy was used to measure particle size and N2 adsorption in a Brunauer–Emmett–Teller instrument to characterize the specific surface area. The catalytic activity was investigated using methanolysis of epoxides under mild conditions as a test reaction. The turnover frequency of the heterogeneous Co‐POM@MIL‐101 catalyst was more than 20 times higher than that of the homogeneous Co‐POM catalyst. The Co‐POM@MIL‐101 catalyst was reused several times with negligible leaching of Co‐POM and with no considerable loss of its initial efficiency. The simplicity of preparation, extraordinary stability and high reactivity make Co‐POM@MIL‐101 an exceptional catalytic matrix that is easily separable from reaction media.  相似文献   

19.
Phosphotungstic acid (H3PW12O40, PTA) supported on ZIF‐9(NH2) was synthesized for the first time and performed as an effective and environmental friendly catalyst in the one‐pot three component Biginelli condensation of different substituted benzaldehydes with ethyl acetoacetate and urea to afford the corresponding 3,4‐dihydropyrimidin‐2‐(1H)‐ones under solvent‐free conditions. ZIF‐9(NH2) and the prepared nanocatalyst PTA@ZIF‐9(NH2) were characterized by XRD, FESEM, TEM, EDX, BET, AAS, TGA, UV–Vis, and FT‐IR. After reaction, the nanocatalyst can be easily separated from the reaction mixture by centrifuge and the recovered catalyst can be reused for at least five times with a 14% reduction in yield after the fifth run. This study showed that ZIF‐9(NH2) can be utilized as a promising support for PTA and developed a highly active, stable and reusable heterogeneous catalyst under easy reaction condition in the multi‐component organic synthesis.  相似文献   

20.
The title compound, [CoCl2(C15H12N2)2]·0.5CH2Cl2, was crystallized from a binary mixture of dichloromethane and hexane and a dimeric supramolecular structure was isolated. The CoII centre exhibits a distorted tetrahedral geometry, with two independent pyrazole‐based ligands occupying two coordination sites and two chloride ligands occupying the third and fourth coordination sites. The supramolecular structure is supported by complementary hydrogen bonding between the pyrazole NH group and the chloride ligand of an adjacent molecule. This hydrogen‐bonding motif yields a ten‐membered hydrogen‐bonded ring. Density functional theory (DFT) simulations at the PBE/6‐311G level of theory were used to probe the solid‐state structure. These simulations suggest that the chelate undergoes a degree of conformational distortion from the lowest‐energy geometry to allow for optimal hydrogen bonding in the solid state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号