首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Assemblies of pyrazine‐2,3‐dicarboxylic acid and CdII in the presence of bis(1,2,4‐triazol‐1‐yl)butane or bis(1,2,4‐triazol‐1‐yl)ethane under ambient conditions yielded two new coordination polymers, namely poly[[tetraaqua[μ2‐1,4‐bis(1,2,4‐triazol‐1‐yl)butane‐κ2N4:N4′]bis(μ2‐pyrazine‐2,3‐dicarboxylato‐κ3N1,O2:O3)dicadmium(II)] dihydrate], {[Cd2(C6H2N2O4)2(C8H12N6)(H2O)4]·2H2O}n, (I), and poly[[diaqua[μ2‐1,2‐bis(1,2,4‐triazol‐1‐yl)ethane‐κ2N4:N4′]bis(μ3‐pyrazine‐2,3‐dicarboxylato‐κ4N1,O2:O3:O3′)dicadmium(II)] dihydrate], {[Cd2(C6H2N2O4)2(C6H8N6)(H2O)2]·2H2O}n, (II). Complex (I) displays an interesting two‐dimensional wave‐like structure and forms a distinct extended three‐dimensional supramolecular structure with the help of O—H...N and O—H...O hydrogen bonds. Complex (II) has a three‐dimensional framework structure in which hydrogen bonds of the O—H...N and O—H...O types are found.  相似文献   

2.
Coordination polymers (CPs) have attracted increasing interest in recent years. In this work, two new CPs, namely poly[[aquabis(2,2′‐bipyridine‐κ2N,N′){μ3‐5‐[(4‐carboxylatophenoxy)methyl]benzene‐1,3‐dicarboxylato‐κ4O1,O1′:O3:O5}(μ‐formato‐κ3O:O,O′)dicadmium(II)] monohydrate], {[Cd2(C16H9O7)(HCO2)(C10H8N2)2(H2O)]·H2O}n ( 1 ), and poly[[(2,2′‐bipyridine‐κ2N,N′){μ3‐5‐[(4‐carboxylphenoxy)methyl]benzene‐1,3‐dicarboxylato‐κ4O1,O1′:O3:O5}manganese(II)] sesquihydrate], {[Mn(C16H10O7)(C10H8N2)]·1.5H2O}n ( 2 ), have been prepared using the tricarboxylic acid 5‐[(4‐carboxyphenoxy)methyl]benzene‐1,3‐dicarboxylic acid and 2,2′‐bipyridine under hydrothermal conditions. CP 1 displays a two‐dimensional layer structure which is further extended into a three‐dimensional (3D) supramolecular structure via intermolecular π–π interactions, while CP 2 shows a different 3D supramolecular structure extended from one‐dimensional ladder chains by intermolecular π–π interactions. In addition, the solid‐state luminescence spectra of 1 and 2 were studied at room temperature.  相似文献   

3.
In poly[aqua(μ3‐benzene‐1,4‐dicarboxylato‐κ5O1,O1′:O1:O4,O4′)[2‐(pyridin‐3‐yl‐κN)‐1H‐benzimidazole]cadmium(II)], [Cd(C8H4O4)(C12H9N3)(H2O)]n, (I), each CdII ion is seven‐coordinated by the pyridine N atom from a 2‐(pyridin‐3‐yl)benzimidazole (3‐PyBIm) ligand, five O atoms from three benzene‐1,4‐dicarboxylate (1,4‐bdc) ligands and one O atom from a coordinated water molecule. The complex forms an extended two‐dimensional carboxylate layer structure, which is further extended into a three‐dimensional network by hydrogen‐bonding interactions. In catena‐poly[[diaquabis[2‐(pyridin‐3‐yl‐κN)‐1H‐benzimidazole]cobalt(II)]‐μ2‐benzene‐1,4‐dicarboxylato‐κ2O1:O4], [Co(C8H4O4)(C12H9N3)2(H2O)2]n, (II), each CoII ion is six‐coordinated by two pyridine N atoms from two 3‐PyBIm ligands, two O atoms from two 1,4‐bdc ligands and two O atoms from two coordinated water molecules. The complex forms a one‐dimensional chain‐like coordination polymer and is further assembled by hydrogen‐bonding interactions to form a three‐dimensional network.  相似文献   

4.
Coordination polymers constructed from metal ions and organic ligands have attracted considerable attention owing to their diverse structural topologies and potential applications. Ligands containing carboxylate groups are among the most extensively studied because of their versatile coordination modes. Reactions of benzene‐1,4‐dicarboxylic acid (H2BDC) and pyridine (py) with ZnII or CoII yielded two new coordination polymers, namely, poly[(μ4‐benzene‐1,4‐dicarboxylato‐κ4O:O′:O′′:O′′′)(pyridine‐κN)zinc(II)], [Zn(C8H4O2)(C5H5N)]n, (I), and catena‐poly[aqua(μ3‐benzene‐1,4‐dicarboxylato‐κ3O:O′:O′′)bis(pyridine‐κN)cobalt(II)], [Co(C8H4O2)(C5H5N)2(H2O)]n, (II). In compound (I), the ZnII cation is five‐coordinated by four carboxylate O atoms from four BDC2− ligands and one pyridine N atom in a distorted square‐pyramidal coordination geometry. Four carboxylate groups bridge two ZnII ions to form centrosymmetric paddle‐wheel‐like Zn22‐COO)4 units, which are linked by the benzene rings of the BDC2− ligands to generate a two‐dimensional layered structure. The two‐dimensional layer is extended into a three‐dimensional supramolecular structure with the help of π–π stacking interactions between the aromatic rings. Compound (II) has a one‐dimensional double‐chain structure based on Co22‐COO)2 units. The CoII cations are bridged by BDC2− ligands and are octahedrally coordinated by three carboxylate O atoms from three BDC2− ligands, one water O atom and two pyridine N atoms. Interchain O—H…O hydrogen‐bonding interactions link these chains to form a three‐dimensional supramolecular architecture.  相似文献   

5.
In the linear coordination polymer catena‐poly[[[aqua(1,10‐phenanthroline‐κ2N,N′)copper(II)]‐μ‐pyridine‐2,6‐dicarboxylato‐κ4O2:O2′,N,O6‐[(nitrato‐κ2O,O′)bismuth(III)]‐μ‐pyridine‐2,6‐dicarboxylato‐κ4O2,N,O6:O6′] dihydrate], {[BiIIICuII(C7H3NO4)2(NO3)(C12H8N2)(H2O)]·2H2O}n, the BiIII cation is O,N,O′‐chelated by the two pyridine‐2,6‐dicarboxylate ligands and O,O′‐chelated by the nitrate anion, the nine coordinating atoms conferring a tricapped trigonal prismatic environment on the metal centre. Each pyridine‐2,6‐dicarboxylate ligand uses one of its carboxylate O atoms to bind to an aqua(1,10‐phenanthroline)copper(II) unit, the Cu—O dative bonds giving rise to the formation of a ribbon motif. The CuII cation exhibits a square‐pyramidal geometry. The ribbon motif propagates along the shortest axis of the triclinic unit cell and the solvent water molecules are hydrogen bonded to the same ribbon.  相似文献   

6.
Three isotypic rare earth complexes, catena‐poly[[aquabis(but‐2‐enoato‐κ2O,O′)yttrium(III)]‐bis(μ‐but‐2‐enoato)‐κ3O,O′:O3O:O,O′‐[aquabis(but‐2‐enoato‐κ2O,O′)yttrium(III)]‐μ‐4,4′‐(ethane‐1,2‐diyl)dipyridine‐κ2N:N′], [Y2(C4H5O2)6(C12H12N2)(H2O)2], the gadolinium(III) analogue, [Gd2(C4H5O2)6(C12H12N2)(H2O)2], and the gadolinium(III) analogue with a 4,4′‐(ethene‐1,2‐diyl)dipyridine bridging ligand, [Gd2(C4H5O2)6(C12H10N2)(H2O)2], are one‐dimensional coordination polymers made up of centrosymmetric dinuclear [M(but‐2‐enoato)3(H2O)]2 units (M = rare earth), further bridged by centrosymmetric 4,4′‐(ethane‐1,2‐diyl)dipyridine or 4,4′‐(ethene‐1,2‐diyl)dipyridine spacers into sets of chains parallel to the [20] direction. There are intra‐chain and inter‐chain hydrogen bonds in the structures, the former providing cohesion of the linear arrays and the latter promoting the formation of broad planes parallel to (010).  相似文献   

7.
Two new one‐dimensional CuII coordination polymers (CPs) containing the C2h‐symmetric terphenyl‐based dicarboxylate linker 1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylate (3,3′‐TPDC), namely catena‐poly[[bis(dimethylamine‐κN)copper(II)]‐μ‐1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylato‐κ4O,O′:O′′:O′′′] monohydrate], {[Cu(C20H12O4)(C2H7N)2]·H2O}n, (I), and catena‐poly[[aquabis(dimethylamine‐κN)copper(II)]‐μ‐1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylato‐κ2O3:O3′] monohydrate], {[Cu(C20H12O4)(C2H7N)2(H2O)]·H2O}n, (II), were both obtained from two different methods of preparation: one reaction was performed in the presence of 1,4‐diazabicyclo[2.2.2]octane (DABCO) as a potential pillar ligand and the other was carried out in the absence of the DABCO pillar. Both reactions afforded crystals of different colours, i.e. violet plates for (I) and blue needles for (II), both of which were analysed by X‐ray crystallography. The 3,3′‐TPDC bridging ligands coordinate the CuII ions in asymmetric chelating modes in (I) and in monodenate binding modes in (II), forming one‐dimensional chains in each case. Both coordination polymers contain two coordinated dimethylamine ligands in mutually trans positions, and there is an additional aqua ligand in (II). The solvent water molecules are involved in hydrogen bonds between the one‐dimensional coordination polymer chains, forming a two‐dimensional network in (I) and a three‐dimensional network in (II).  相似文献   

8.
In recent years, coordination polymers constructed from multidentate carboxylate and pyridyl ligands have attracted much attention because these ligands can adopt a rich variety of coordination modes and thus lead to the formation of crystalline products with intriguing structures and interesting properties. A new coordination polymer, namely poly[[μ2‐1,6‐bis(pyridin‐3‐yl)‐1,3,5‐hexatriene‐κ2N:N′](μ3‐naphthalene‐1,4‐dicarboxylato‐κ4O1,O1′:O4:O4′)zinc(II)], [Zn(C12H6O4)(C16H14N2)]n, has been prepared by the self‐assembly of Zn(NO3)2·6H2O, naphthalene‐1,4‐dicarboxylic acid (1,4‐H2ndc) and 1,6‐bis(pyridin‐3‐yl)‐1,3,5‐hexatriene (3,3′‐bphte) under hydrothermal conditions. The title compound has been structurally characterized by IR spectroscopy, elemental analysis, powder X‐ray diffraction and single‐crystal X‐ray diffraction analysis. Each ZnII ion is six‐coordinated by four O atoms from three 1,4‐ndc2− ligands and by two N atoms from two 3,3′‐bphte ligands, forming a distorted octahedral ZnO4N2 coordination geometry. Pairs of ZnII ions are linked by 1,4‐ndc2− ligands, leading to the formation of a two‐dimensional square lattice ( sql ) layer extending in the ab plane. In the crystal, adjacent layers are further connected by 3,3′‐bphte bridges, generating a three‐dimensional architecture. From a topological viewpoint, if each dinuclear zinc unit is considered as a 6‐connected node and the 1,4‐ndc2− and 3,3′‐bphte ligands are regarded as linkers, the structure can be simplified as a unique three‐dimensional 6‐connected framework with the point symbol 446108. The thermal stability and solid‐state photoluminescence properties have also been investigated.  相似文献   

9.
The CoII cation in poly[[aqua(μ‐benzene‐1,2‐dicarboxylato‐κ3O1,O2:O1)(μ‐4,4′‐bipyridine‐κ2N:N′)cobalt(II)] trihydrate], {[Co(C8H4O4)(C10H8N2)(H2O)]·3H2O}n, is octahedrally coordinated by two N atoms of two 4,4′‐bipyridine ligands, three O atoms from phthalate anions and a fourth O atom from a coordinated water molecule. The packing consists of planes of coordination polymers linked by hydrogen bonds mediated by three solvent water molecules; the linkage is achieved by the water molecules forming intricate oligomeric clusters which also involve the O atoms of the phthalate ligands.  相似文献   

10.
With the rapid development of modern industry, water pollution has become an intractable environmental issue facing humans worldwide. In particular, the organic dyes discharged into natural water from dyestuffs, dyeing and the textile industry are the main sources of pollution in wastewater. To eliminate these types of pollutants, degradation of organic contaminants through a photocatalytic technique is an effective methodology. To exploit more crystalline photocatalysts for the degradation of organic dyes, two coordination polymers, namely catena‐poly[[(3,5‐dicarboxybenzene‐1‐carboxylato‐κO 1)silver(I)]‐μ‐trans‐1‐(pyridin‐3‐yl)‐2‐(pyridin‐4‐yl)ethene‐κ2N :N ′], [Ag(C9H5O6)(C12H10N2)]n or [Ag(H2BTC)(3,4′‐bpe)]n , (I), and poly[[(μ3‐5‐carboxybenzene‐1,3‐dicarboxylato‐κ4O 1,O 1′:O 3:O 3)[μ‐trans‐1‐(pyridin‐3‐yl)‐2‐(pyridin‐4‐yl)ethene‐κ2N :N′ ]cadmium(II)] monohydrate], {[Cd(C9H4O6)(C12H10N2)]·H2O}n or {[Cd(HBTC)(3,4′‐bpe)]·H2O}n , (II), have been prepared by the hydrothermal reactions of benzene‐1,3,5‐tricarboxylic acid (H3BTC) and trans‐1‐(pyridin‐3‐yl)‐2‐(pyridin‐4‐yl)ethene (3,4′‐bpe) in the presence of AgNO3 or Cd(NO3)2·4H2O, respectively. These two title compounds have been structurally characterized by IR spectroscopy, elemental analysis, single‐crystal X‐ray diffraction and powder X‐ray diffraction. In (I), the AgI ions and organic ligands form a one‐dimensional coordination chain, and adjacent coordination chains are connected by Ag…O interactions to give rise to a two‐dimensional supramolecular network. Each two‐dimensional network is entangled with other equivalent networks to generate an infrequent interlocked 2D→3D (2D and 3D are two‐ and three‐dimensional, respectively) supramolecular framework. In (II), the CdII ions are bridged by the HBTC2− and 3,4′‐bpe ligands, which lie across centres of inversion, to give a two‐dimensional coordination network. The thermal stabilities and photocatalytic properties of the title compounds have also been studied.  相似文献   

11.
Two new coordination polymers (CPs) formed from 5‐iodobenzene‐1,3‐dicarboxylic acid (H2iip) in the presence of the flexible 1,4‐bis(1H‐imidazol‐1‐yl)butane (bimb) auxiliary ligand, namely poly[[μ2‐1,4‐bis(1H‐imidazol‐1‐yl)butane‐κ2N3:N3′](μ3‐5‐iodobenzene‐1,3‐dicarboxylato‐κ4O1,O1′:O3:O3′)cobalt(II)], [Co(C8H3IO4)(C10H14N4)]n or [Co(iip)(bimb)]n, (1), and poly[[[μ2‐1,4‐bis(1H‐imidazol‐1‐yl)butane‐κ2N3:N3′](μ2‐5‐iodobenzene‐1,3‐dicarboxylato‐κ2O1:O3)zinc(II)] trihydrate], {[Zn(C8H3IO4)(C10H14N4)]·3H2O}n or {[Zn(iip)(bimb)]·3H2O}n, (2), were synthesized and characterized by FT–IR spectroscopy, thermogravimetric analysis (TGA), solid‐state UV–Vis spectroscopy, single‐crystal X‐ray diffraction analysis and powder X‐ray diffraction analysis (PXRD). The iip2− ligand in (1) adopts the (κ11‐μ2)(κ1, κ1‐μ1)‐μ3 coordination mode, linking adjacent secondary building units into a ladder‐like chain. These chains are further connected by the flexible bimb ligand in a transtranstrans conformation. As a result, a twofold three‐dimensional interpenetrating α‐Po network is formed. Complex (2) exhibits a two‐dimensional (4,4) topological network architecture in which the iip2− ligand shows the (κ1)(κ1)‐μ2 coordination mode. The solid‐state UV–Vis spectra of (1) and (2) were investigated, together with the fluorescence properties of (2) in the solid state.  相似文献   

12.
Excellent fluorescence properties are exhibited by d10 metal compounds. The novel three‐dimensional ZnII coordination framework, poly[[{μ2‐bis[4‐(2‐methyl‐1H‐imidazol‐1‐yl)phenyl] ether‐κ2N3:N3′}(μ2‐furan‐2,5‐dicarboxylato‐κ2O2:O5)zinc(II)] 1.76‐hydrate], {[Zn(C6H2O5)(C20H18N4O)]·1.76H2O}n, has been prepared and characterized using IR spectroscopy, elemental analysis and single‐crystal X‐ray diffraction. The crystal structure analysis revealed that the compound exhibits a novel fourfold interpenetrating diamond‐like network. This polymer also displays a strong fluorescence emission in the solid state at room temperature.  相似文献   

13.
The coordination polymer catena‐poly[[(dimethylformamide‐κO)[μ3‐5‐(1,3‐dioxo‐4,5,6,7‐tetraphenylisoindolin‐2‐yl)isophthalato‐κ4O1,O1′:O3:O3′](methanol‐κO)manganese(III)] dimethylformamide monosolvate], {[Mn(C40H23NO6)(CH3OH)(C3H7NO)]·C3H7NO}n, has been synthesized from the reaction of 5‐(1,3‐dioxo‐4,5,6,7‐tetraphenylisoindolin‐2‐yl)isophthalic acid and manganese(II) acetate tetrahydrate in a glass tube at room temperature by solvent diffusion. The MnII centre is hexacoordinated by two O atoms from one chelating carboxylate group, by two O atoms from two monodentate carboxylate groups and by one O atom each from a methanol and a dimethylformamide (DMF) ligand. The single‐crystal structure crystallizes in the triclinic space group P. Moreover, the coordination polymer shows one‐dimensional 2‐connected {0} uninodal chain networks, and free DMF molecules are connected to the chains by O—H...O hydrogen bonds. The thermogravimetric and photoluminescent properties of the compound have also been investigated.  相似文献   

14.
In the coordination polymer, poly[[{μ‐1‐[(1H‐benzimidazol‐2‐yl)methyl]‐1H‐imidazole‐κ2N:N′}(μ‐5‐carboxybenzene‐1,3‐dicarboxylato‐κ2O1:O3)zinc(II)] dimethylformamide monosolvate pentahydrate], {[Zn(C9H4O6)(C11H10N4)]·C3H7NO·5H2O}n, the ZnII ion is coordinated by two N atoms from two symmetry‐related 1‐[(1H‐benzimidazol‐2‐yl)methyl]‐1H‐imidazole (bmi) ligands and two O atoms from two symmetry‐related 5‐carboxybenzene‐1,3‐dicarboxylate (Hbtc2−) ligands in a slightly distorted tetrahedral geometry. The ZnII ions are bridged by Hbtc2− and bmi ligands, leading to a 4‐connected two‐dimensional network with the topological notation (44.62). Adjacent layers are further connected by 12 kinds of hydrogen bonds and also by π–π interactions, resulting in a three‐dimensional supramolecular architecture in the solid state.  相似文献   

15.
In the construction of coordination polymers, many factors can influence the formation of the final architectures, such as the nature of the metal centres, the organic ligands and the counter‐anions. In the coordination polymer poly[aqua(μ‐benzene‐1,2‐dicarboxylato‐κ4O 1,O 1′:O 2,O 2′)[μ‐2‐(1H‐imidazol‐1‐ylmethyl)‐6‐methyl‐1H‐benzimidazole‐κ2N 2:N 3]cadmium(II)], [Cd(C12H12N4)(C8H4O4)(H2O)]n or [Cd(immb)(1,2‐bdic)(H2O)]n , each CdII ion is seven‐coordinated by two N atoms from two symmetry‐related 2‐(1H‐imidazol‐1‐ylmethyl)‐6‐methyl‐1H‐benzimidazole (immb) ligands, by four O atoms from two symmetry‐related benzene‐1,2‐dicarboxylate (1,2‐bdic2−) ligands and by one water molecule, leading to a CdN2O5 distorted pentagonal bipyramidal coordination environment. The immb and 1,2‐bdic2− ligands bridge CdII ions and form a two‐dimensional network structure. O—H…O and N—H…O hydrogen bonds stabilize the structure. In addition, the IR spectroscopic properties, PXRD patterns, thermogravimetric behaviour and fluorescence properties of the title polymer have been investigated.  相似文献   

16.
Compared with the monomorphic type of ligand, combining mixed ligands in one coordination polymer offers greater tunability of the structural framework. Employment of N‐heterocyclic ligands and aromatic polycarboxylates is an effective approach for the construction of metal–organic frameworks (MOFs). Two new coordination polymers incorporating both 2‐[(1H‐imidazol‐1‐yl)methyl]‐1H‐benzimidazole (imb) and benzenedicarboxylic acid isomers, namely, catena‐poly[[[di‐μ‐chlorido‐bis[(2‐carboxybenzoato‐κ2O1,O1′)cadmium(II)]]‐bis{μ‐2‐[(1H‐imidazol‐1‐yl)methyl]‐1H‐benzimidazole‐κ2N:N′}] dihydrate], {[Cd(C8H5O4)Cl(C11H10N4)]·H2O}n, (I), and poly[[aqua(μ2‐benzene‐1,3‐dicarboxylato‐κ3O1,O1′:O3){μ2‐2‐[(1H‐imidazol‐1‐yl)methyl]‐1H‐benzimidazole‐κ2N:N′}cadmium(II)] dihydrate], {[Cd(C8H4O4)(C11H10N4)(H2O)]·2H2O}n, (II), have been prepared and structurally characterized by single‐crystal X‐ray diffraction. In polymer (I), imb ligands bridge CdII ions, forming a one‐dimensional chain, and 2‐carboxybenzoate anions coordinate to the CdII ions in a terminal fashion. Polymer (II) exhibits a two‐dimensional network structure in which imb ligands and the benzene‐1,3‐dicarboxylate anions join CdII ions co‐operatively. This indicates that changing of the aromatic dicarboxylic acids can result in polymers with different compositions and architectures. Moreover, their IR spectra, PXRD (powder X‐ray diffraction) patterns, thermogravimetric analyses and fluorescence properties were also investigated.  相似文献   

17.
Two novel polymers exhibiting metal–organic frameworks (MOFs) have been synthesized by the combination of a metal ion with a benzene‐1,3,5‐tricarboxylate ligand (BTC) and 1,10‐phenanthroline (phen) under hydrothermal conditions. The first compound, poly[[(μ4‐benzene‐1,3,5‐tricarboxylato‐κ4O:O′:O′′:O′′′)(μ‐hydroxido‐κ2O:O)bis(1,10‐phenanthroline‐κ2N,N′)dizinc(II)] 0.32‐hydrate], {[Zn2(C9H3O6)(OH)(C12H8N2)2]·0.32H2O}n, denoted Zn–MOF, forms a two‐dimensional network in which a binuclear Zn2 cluster serves as a 3‐connecting node; the BTC trianion also acts as a 3‐connecting centre. The overall topology is that of a 63 net. The phen ligands serve as appendages to the network and interdigitate with phen ligands belonging to adjacent parallel sheets. The second compound, poly[[(μ6‐benzene‐1,3,5‐tricarboxylato‐κ7O1,O1′:O1:O3:O3′:O5:O5′)(μ3‐hydroxido‐κ2O:O:O)(1,10‐phenanthroline‐κ2N,N′)dimanganese(II)] 1.26‐hydrate], {[Mn2(C9H3O6)(OH)(C12H8N2)]·1.26H2O}n, denoted Mn–MOF, exists as a three‐dimensional network in which an Mn4 cluster serves as a 6‐connecting unit, while the BTC trianion again plays the role of a 3‐connecting centre. The overall topology is that of the rutile net. Phen ligands act as appendages to the network and form the `S‐shaped' packing mode.  相似文献   

18.
A novel two‐dimensional CoII coordination framework, namely poly[(μ2‐biphenyl‐4,4′‐diyldicarboxylato‐κ2O4:O4′){μ2‐bis[4‐(2‐methyl‐1H‐imidazol‐1‐yl)phenyl] ether‐κ2N3:N3′}cobalt(II)], [Co(C14H8O4)(C20H18N4O)]n, has been prepared and characterized by IR, elemental analysis, thermal analysis and single‐crystal X‐ray diffraction. The crystal structure reveals that the compound has an achiral two‐dimensional layered structure based on opposite‐handed helical chains. In addition, it exhibits significant photocatalytic degradation activity for the degradation of methylene blue.  相似文献   

19.
In catena‐poly[[aqua[1,3‐bis(pyridine‐3‐ylmethoxy)benzene‐κN]zinc(II)]‐μ2‐benzene‐1,4‐dicarboxylato‐κ2O1:O4], [Zn(C8H4O4)(C18H16N2O2)(H2O)]n, each ZnII centre is tetrahedrally coordinated by two O atoms of bridging carboxylate groups from two benzene‐1,4‐dicarboxylate anions (denoted L2−), one O atom from a water molecule and one N atom from a 1,3‐bis[(pyridin‐3‐yl)methoxy]benzene ligand (denoted bpmb). (Aqua)O—H...N hydrogen‐bonding interactions induce the formation of one‐dimensional helical [Zn(L)(bpmb)(H2O)]n chains which are interlinked through (aqua)O—H...O hydrogen‐bonding interactions, producing two‐dimensional corrugated sheets.  相似文献   

20.
Metal–organic frameworks (MOFs) based on multidentate N‐heterocyclic ligands involving imidazole, triazole, tetrazole, benzimidazole, benzotriazole or pyridine present intriguing molecular topologies and have potential applications in ion exchange, magnetism, gas sorption and storage, catalysis, optics and biomedicine. The 2‐[(1H‐1,2,4‐triazol‐1‐yl)methyl]‐1H‐benzimidazole (tmb) ligand has four potential N‐atom donors and can act in monodentate, chelating, bridging and tridentate coordination modes in the construction of complexes, and can also act as both a hydrogen‐bond donor and acceptor. In addition, the tmb ligand can adopt different coordination conformations, resulting in complexes with helical structures due to the presence of the flexible methylene spacer. A new three‐dimensional coordination polymer, poly[[bis(μ2‐benzene‐1,4‐dicarboxylato)‐κ4O1,O1′:O4,O4′2O1:O4‐bis{μ2‐2‐[(1H‐1,2,4‐triazol‐1‐yl)methyl‐κN4]‐1H‐benzimidazole‐κN3}dizinc(II)] trihydrate], {[Zn(C8H4O4)(C10H9N5)]·1.5H2O}n, has been synthesized by the reaction of ZnCl2 with tmb and benzene‐1,4‐dicarboxylic acid (H2bdic) under solvothermal conditions. There are two crystallographically distinct bdic2− ligands [bdic2−(A) and bdic2−(B)] in the structure which adopt different coordination modes. The ZnII ions are bridged by tmb ligands, leading to one‐dimensional helical chains with different handedness, and adjacent helices are linked by bdic2−(A) ligands, forming a two‐dimensional network structure. The two‐dimensional layers are further connected by bdic2−(B) ligands, resulting in a three‐dimensional framework with the topological notation 66. The IR spectra and thermogravimetric curves are consistent with the results of the X‐ray crystal structure analysis and the title polymer exhibits good fluorescence in the solid state at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号