共查询到20条相似文献,搜索用时 15 毫秒
1.
Haruvegowda Kiran Kumar Hemmige S. Yathirajan Nagaraj Manju Balakrishna Kalluraya Ravindranath S. Rathore Christopher Glidewell 《Acta Crystallographica. Section C, Structural Chemistry》2019,75(6):768-776
The reaction of 5‐chloro‐3‐methyl‐1‐phenyl‐1H‐pyrazole‐4‐carbaldehyde with phenols under basic conditions yields the corresponding 5‐aryloxy derivatives; the subsequent reaction of these carbaldehydes with substituted acetophenones yields the corresponding chalcones, which in turn undergo cyclocondensation reactions with hydrazine in the presence of acetic acid to form N‐acetylated reduced bipyrazoles. Structures are reported for three 5‐aryloxycarbaldehydes and the 5‐piperidino analogue, and for two reduced bipyrazole products. 5‐(2‐Chlorophenoxy)‐3‐methyl‐1‐phenyl‐1H‐pyrazole‐4‐carbaldehyde, C17H13ClN2O2, (II), which crystallizes with Z′ = 2 in the space group P, exhibits orientational disorder of the carbaldehyde group in each of the two independent molecules. Each of 3‐methyl‐5‐(4‐nitrophenoxy)‐1‐phenyl‐1H‐pyrazole‐4‐carbaldehyde, C17H13N3O4, (IV), 3‐methyl‐5‐(naphthalen‐2‐yloxy)‐1‐phenyl‐1H‐pyrazole‐4‐carbaldehyde, C21H16N2O2, (V), and 3‐methyl‐1‐phenyl‐5‐(piperidin‐1‐yl)‐1H‐pyrazole‐4‐carbaldehyde, C16H19N3O, (VI), (3RS)‐2‐acetyl‐5‐(4‐azidophenyl)‐5′‐(2‐chlorophenoxy)‐3′‐methyl‐1′‐phenyl‐3,4‐dihydro‐1′H,2H‐[3,4′‐bipyrazole] C27H22ClN7O2, (IX) and (3RS)‐2‐acetyl‐5‐(4‐azidophenyl)‐3′‐methyl‐5′‐(naphthalen‐2‐yloxy)‐1′‐phenyl‐3,4‐dihydro‐1′H,2H‐[3,4′‐bipyrazole] C31H25N7O2, (X), has Z′ = 1, and each is fully ordered. The new compounds have all been fully characterized by analysis, namely IR spectroscopy, 1H and 13C NMR spectroscopy, and mass spectrometry. In each of (II), (V) and (IX), the molecules are linked into ribbons, generated respectively by combinations of C—H…N, C—H…π and C—Cl…π interactions in (II), C—H…O and C—H…π hydrogen bonds in (V), and C—H…N and C—H…O hydrogen bonds in (IX). The molecules of compounds (IV) and (IX) are both linked into sheets, by multiple C—H…O and C—H…π hydrogen bonds in (IV), and by two C—H…π hydrogen bonds in (IX). A single C—H…N hydrogen bond links the molecules of (X) into centrosymmetric dimers. Comparisons are made with the structures of some related compounds. 相似文献
2.
Sergio A. Guerrero Juan E. Ramírez Alirio Palma Justo Cobo Christopher Glidewell 《Acta Crystallographica. Section C, Structural Chemistry》2019,75(2):168-177
A concise, efficient and versatile route from simple starting materials to tricyclic tetrahydro‐1‐benzazepines carrying [a]‐fused heterocyclic units is reported. Thus, the easily accessible methyl 2‐[(2‐allyl‐4‐chlorophenyl)amino]acetate, (I), was converted, via (2RS,4SR)‐7‐chloro‐2,3,4,5‐tetrahydro‐1,4‐epoxy‐1‐benzo[b]azepine‐2‐carboxylate, (II), to the key intermediate methyl (2RS,4SR)‐7‐chloro‐4‐hydroxy‐2,3,4,5‐tetrahydro‐1H‐benzo[b]azepine‐2‐carboxylate, (III). Chloroacetylation of (III) provided the two regioisomers methyl (2RS,4SR)‐7‐chloro‐1‐(2‐chloroacetyl)‐4‐hydroxy‐2,3,4,5‐tetrahydro‐1H‐benzo[b]azepine‐2‐carboxylate, (IVa), and methyl (2RS,4SR)‐7‐chloro‐4‐(2‐chloroacetoxy)‐2,3,4,5‐tetrahydro‐1H‐benzo[b]azepine‐2‐carboxylate, C14H15Cl2NO4, (IVb), as the major and minor products, respectively, and further reaction of (IVa) with aminoethanol gave the tricyclic target compound (4aRS,6SR)‐9‐chloro‐6‐hydroxy‐3‐(2‐hydroxyethyl)‐2,3,4a,5,6,7‐hexahydrobenzo[f]pyrazino[1,2‐a]azepine‐1,4‐dione, C15H17ClN2O4, (V). Reaction of ester (III) with hydrazine hydrate gave the corresponding carbohydrazide (VI), which, with trimethoxymethane, gave a second tricyclic target product, (4aRS,6SR)‐9‐chloro‐6‐hydroxy‐4a,5,6,7‐tetrahydrobenzo[f][1,2,4]triazino[4,5‐a]azepin‐4(3H)‐one, C12H12ClN3O2, (VII). Full spectroscopic characterization (IR, 1H and 13C NMR, and mass spectrometry) is reported for each of compounds (I)–(III), (IVa), (IVb) and (V)–(VII), along with the molecular and supramolecular structures of (IVb), (V) and (VII). In each of (IVb), (V) and (VII), the azepine ring adopts a chair conformation and the six‐membered heterocyclic rings in (V) and (VII) adopt approximate boat forms. The molecules in (IVb), (V) and (VII) are linked, in each case, into complex hydrogen‐bonded sheets, but these sheets all contain a different range of hydrogen‐bond types: N—H…O, C—H…O, C—H…N and C—H…π(arene) in (IVb), multiple C—H…O hydrogen bonds in (V), and N—H…N, O—H…O, C—H…N, C—H…O and C—H…π(arene) in (VII). 相似文献
3.
《Acta Crystallographica. Section C, Structural Chemistry》2018,74(3):312-320
A concise, efficient and versatile synthesis of amino‐substituted benzo[b]pyrimido[5,4‐f]azepines is described: starting from a 5‐allyl‐4,6‐dichloropyrimidine, the synthesis involves base‐catalysed aminolysis followed by intramolecular Friedel–Crafts cyclization. Four new amino‐substituted benzo[b]pyrimido[5,4‐f]azepines are reported, and all the products and reaction intermediates have been fully characterized by IR, 1H and 13C NMR spectroscopy and mass spectrometry, and the molecular and supramolecular structures of three products and one intermediate have been determined. In each of N,2,6,11‐tetramethyl‐N‐phenyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepin‐4‐amine, C22H24N5, (III), 4‐(1H‐benzo[d]imidazol‐1‐yl)‐6,11‐dimethyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepine, which crystallizes as a 0.374‐hydrate, C21H19N5·0.374H2O, (VIIIa), and 6,7,9,11‐tetramethyl‐4‐(5‐methyl‐1H‐benzo[d]imidazol‐1‐yl)‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepine, C24H25N5, (VIIIc), the azepine ring adopts a boat conformation, but with a different configuration at the stereogenic centre in (VIIIc), as compared with (III) and (VIIIa). In the intermediate 5‐allyl‐6‐(1H‐benzo[d]imidazol‐1‐yl)‐N‐methyl‐N‐(4‐methylphenyl)pyrimidin‐4‐amine, C22N21N5, (VIIb), the immediate precursor of 4‐(1H‐benzo[d]imidazol‐1‐yl)‐6,8,11‐trimethyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepine, (VIIIb), the allyl group is disordered over two sets of atomic sites having occupancies of 0.688 (5) and 0.312 (5). The molecules of (III) are linked into chains by a C—H…π(pyrimidine) hydrogen bond, and those of (VIIb) are linked into complex sheets by three hydrogen bonds, one of the C—H…N type and two of C—H…π(arene) type. The molecules of the organic component in (VIIIa) are linked into a chain of rings by two C—H…π(arene) hydrogen bonds, and these chains are linked into sheets by the water components; a single weak C—H…N hydrogen bond links molecules of (VIIIc) into centrosymmetric R22(10) dimers. Comparisons are made with some related compounds. 相似文献
4.
Daniel E. Vicentes Ricaurte Rodríguez Patricia Ochoa Justo Cobo Christopher Glidewell 《Acta Crystallographica. Section C, Structural Chemistry》2019,75(10):1405-1416
A concise and efficient synthesis of a series of amino‐substituted benzimidazole–pyrimidine hybrids has been developed, starting from the readily available N4‐(2‐aminophenyl)‐6‐methoxy‐5‐nitrosopyrimidine‐2,4‐diamine. In each of N5‐benzyl‐6‐methoxy‐4‐(2‐phenyl‐1H‐benzo[d]imidazol‐1‐yl)pyrimidine‐2,5‐diamine, C25H22N6O, (I), 6‐methoxy‐N5‐(4‐methoxybenzyl)‐4‐[2‐(4‐methoxyphenyl)‐1H‐benzo[d]imidazol‐1‐yl]pyrimidine‐2,5‐diamine, C27H26N6O3, (III), 6‐methoxy‐N5‐(4‐nitrobenzyl)‐4‐[2‐(4‐nitrophenyl)‐1H‐benzo[d]imidazol‐1‐yl]pyrimidine‐2,5‐diamine, C25H20N8O5, (IV), the molecules are linked into three‐dimensional framework structures, using different combinations of N—H…N, N—H…O, C—H…O, C—H…N and C—H…π hydrogen bonds in each case. Oxidative cleavage of 6‐methoxy‐N5‐(4‐methylbenzyl)‐4‐[2‐(4‐methylphenyl)‐1H‐benzo[d]imidazol‐1‐yl]pyrimidine‐2,5‐diamine, (II), with diiodine gave 6‐methoxy‐4‐[2‐(4‐methylphenyl)‐1H‐benzo[d]imidazol‐1‐yl]pyrimidine‐2,5‐diamine, which crystallized as a monohydrate, C19H18N6O·H2O, (V), and reaction of (V) with trifluoroacetic acid gave two isomeric products, namely N‐{5‐amino‐6‐methoxy‐6‐[2‐(4‐methylphenyl)‐1H‐benzo[d]imidazol‐1‐yl]pyrimidin‐2‐yl}‐2,2,2‐trifluoroacetamide, which crystallized as an ethyl acetate monosolvate, C21H17F3N6O2·C4H8O2, (VI), and N‐{2‐amino‐6‐methoxy‐4‐[2‐(4‐methylphenyl)‐1H‐benzo[d]imidazol‐1‐yl]pyrimidin‐5‐yl}‐2,2,2‐trifluoroacetamide, which crystallized as a methanol monosolvate, C21H17F3N6O2·CH4O, (VIIa). For each of (V), (VI) and (VIIa), the supramolecular assembly is two‐dimensional, based on different combinations of O—H…N, N—H…O, N—H…N, C—H…O and C—H…π hydrogen bonds in each case. Comparisons are made with some related structures. 相似文献
5.
Pablo Romo Jairo Quiroga Justo Cobo Christopher Glidewell 《Acta Crystallographica. Section C, Structural Chemistry》2020,76(8):779-785
The synthesis and characterization of three new dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine] compounds are reported, together with the crystal structures of two of them. (3RS,1′SR,2′SR,7a′SR)‐2′‐(4‐Chlorophenyl)‐1‐hexyl‐2′′‐sulfanylidene‐5′,6′,7′,7a′‐tetrahydro‐2′H‐dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine]‐2,4′′‐dione, C28H30ClN3O2S2, (I), (3RS,1′SR,2′SR,7a′SR)‐2′‐(4‐chlorophenyl)‐1‐benzyl‐5‐methyl‐2′′‐sulfanylidene‐5′,6′,7′,7a′‐tetrahydro‐2′H‐dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine]‐2,4′′‐dione, C30H26ClN3O2S2, (II), and (3RS,1′SR,2′SR,7a′SR)‐2′‐(4‐chlorophenyl)‐5‐fluoro‐2′′‐sulfanylidene‐5′,6′,7′,7a′‐tetrahydro‐2′H‐dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine]‐2,4′′‐dione, C22H17ClFN3O2S2, (III), were each isolated as a single regioisomer using a one‐pot reaction involving l ‐proline, a substituted isatin and (Z)‐5‐(4‐chlorobenzylidene)‐2‐sulfanylidenethiazolidin‐4‐one [5‐(4‐chlorobenzylidene)rhodanine]. The compositions of (I)–(III) were established by elemental analysis, complemented by high‐resolution mass spectrometry in the case of (I); their constitutions, including the definition of the regiochemistry, were established using NMR spectroscopy, and the relative configurations at the four stereogenic centres were established using single‐crystal X‐ray structure analysis. A possible reaction mechanism for the formation of (I)–(III) is proposed, based on the detailed stereochemistry. The molecules of (I) are linked into simple chains by a single N—H…N hydrogen bond, those of (II) are linked into a chain of rings by a combination of N—H…O and C—H…S=C hydrogen bonds, and those of (III) are linked into sheets by a combination of N—H…N and N—H…S=C hydrogen bonds. 相似文献
6.
《Acta Crystallographica. Section C, Structural Chemistry》2018,74(6):696-702
A concise and efficient synthesis of 6‐benzimidazolyl‐5‐nitrosopyrimidines has been developed using Schiff base‐type intermediates derived from N4‐(2‐aminophenyl)‐6‐methoxy‐5‐nitrosopyrimidine‐2,4‐diamine. 6‐Methoxy‐N4‐{2‐[(4‐methylbenzylidene)amino]phenyl}‐5‐nitrosopyrimidine‐2,4‐diamine, (I), and N4‐{2‐[(ethoxymethylidene)amino]phenyl}‐6‐methoxy‐5‐nitrosopyrimidine‐2,4‐diamine, (III), both crystallize from dimethyl sulfoxide solution as the 1:1 solvates C19H18N6O2·C2H6OS, (Ia), and C14H16N6O3·C2H6OS, (IIIa), respectively. The interatomic distances in these intermediates indicate significant electronic polarization within the substituted pyrimidine system. In each of (Ia) and (IIIa), intermolecular N—H…O hydrogen bonds generate centrosymmetric four‐molecule aggregates. Oxidative ring closure of intermediate (I), effected using ammonium hexanitratocerate(IV), produced 4‐methoxy‐6‐[2‐(4‐methylphenyl‐1H‐benzimidazol‐1‐yl]‐5‐nitrosopyrimidin‐2‐amine, C19H16N6O2, (II) [Cobo et al. (2018). Private communication (CCDC 1830889). CCDC, Cambridge, England], where the extent of electronic polarization is much less than in (Ia) and (IIIa). A combination of N—H…N and C—H…O hydrogen bonds links the molecules of (II) into complex sheets. 相似文献
7.
Aletti S. Praveen Hemmige S. Yathirajan Manpreet Kaur Badiadka Narayana Eric C. Hosten Richard Betz Christopher Glidewell 《Acta Crystallographica. Section C, Structural Chemistry》2014,70(9):920-926
Four imidazo[2,1‐b][1,3,4]thiadiazoles containing a simply‐substituted 6‐aryl group have been synthesized by reaction of 2‐amino‐1,3,4‐thiadiazoles with bromoacetylarenes using microwave irradiation and brief reaction times. 6‐(2‐Chlorophenyl)imidazo[2,1‐b][1,3,4]thiadiazole, C10H6ClN3S, (I), 6‐(2‐chlorophenyl)‐2‐methylimidazo[2,1‐b][1,3,4]thiadiazole, C11H8ClN3S, (II), 6‐(3,4‐dichlorophenyl)imidazo[2,1‐b][1,3,4]thiadiazole, C10H5Cl2N3S, (III), and 6‐(4‐fluoro‐3‐methoxyphenyl)‐2‐methylimidazo[2,1‐b][1,3,4]thiadiazole, C12H10FN3OS, (IV), crystallize with Z′ values of 2, 1, 1 and 2 respectively. The molecular skeletons are all nearly planar and the dihedral angles between the imidazole and aryl rings are 1.51 (8) and 7.28 (8)° in (I), 9.65 (7)° in (II), 10.44 (8)° in (III), and 1.05 (8) and 7.21 (8)° in (IV). The molecules in (I) are linked by three independent C—H...N hydrogen bonds to form ribbons containing alternating R22(8) and R44(18) rings, and these ribbons are linked into a three‐dimensional array by three independent π‐stacking interactions. Both (II) and (III) contain centrosymmetric dimers formed by π‐stacking interactions but hydrogen bonds are absent, and the molecules of (IV) are linked into centrosymmetric R22(8) dimers by C—H...N hydrogen bonds. Comparisons are made with a number of related compounds. 相似文献
8.
Diego Rodríguez Sergio Andrs Guerrero Alirio Palma Justo Cobo Christopher Glidewell 《Acta Crystallographica. Section C, Structural Chemistry》2020,76(9):883-890
Structures are reported for two matched sets of substituted 4‐styrylquinolines which were prepared by the formation of the heterocyclic ring in cyclocondensation reactions between 1‐(2‐aminophenyl)‐3‐arylprop‐2‐en‐1‐ones with 1,3‐dicarbonyl compounds. (E)‐3‐Acetyl‐4‐[2‐(4‐methoxyphenyl)ethenyl]‐2‐methylquinoline, C21H19NO2, (I), (E)‐3‐acetyl‐4‐[2‐(4‐bromophenyl)ethenyl]‐2‐methylquinoline, C20H16BrNO, (II), and (E)‐3‐acetyl‐2‐methyl‐4‐{2‐[4‐(trifluoromethyl)phenyl]ethenyl}quinoline, C21H16F3NO, (III), are isomorphous and in each structure the molecules are linked by a single C—H…O hydrogen bond to form C(6) chains. In (I), but not in (II) or (III), this is augmented by a C—H…π(arene) hydrogen bond to form a chain of rings; hence, (I)–(III) are not strictly isostructural. By contrast with (I)–(III), no two of ethyl (E)‐4‐[2‐(4‐methoxyphenyl)ethenyl]‐2‐methylquinoline‐3‐carboxylate, C22H21NO3, (IV), ethyl (E)‐4‐[2‐(4‐bromophenyl)ethenyl]‐2‐methylquinoline‐3‐carboxylate, C21H18BrNO2, (V), and ethyl (E)‐2‐methyl‐4‐{2‐[4‐(trifluoromethyl)phenyl]ethenyl}quinoline‐3‐carboxylate, C22H18F3NO2, (VI), are isomorphous. The molecules of (IV) are linked by a single C—H…O hydrogen bond to form C(13) chains, but cyclic centrosymmetric dimers are formed in both (V) and (VI). The dimer in (V) contains a C—H…π(pyridyl) hydrogen bond, while that in (VI) contains two independent C—H…O hydrogen bonds. Comparisons are made with some related structures, and both the regiochemistry and the mechanism of the heterocyclic ring formation are discussed. 相似文献
9.
Jairo Quiroga Dayana Pantoja Justo Cobo Christopher Glidewell 《Acta Crystallographica. Section C, Structural Chemistry》2013,69(8):884-887
In the title compound, C31H29N3O2, the reduced pyridine ring adopts a conformation intermediate between the envelope and half‐chair forms. The aryl rings of the benzyl and phenyl substituents are nearly parallel and overlap, indicative of an intramolecular π–π stacking interaction. A combination of two C—H...O hydrogen bonds and one C—H...N hydrogen bond links the molecules into a bilayer having tert‐butyl groups on both faces.<!?tpb=19.5pt> 相似文献
10.
《Acta Crystallographica. Section C, Structural Chemistry》2018,74(2):203-211
Six closely related N‐[3‐(2‐chlorobenzoyl)‐5‐ethylthiophen‐2‐yl]arylamides have been synthesized and structurally characterized, together with a representative reaction intermediate. In each of N‐[3‐(2‐chlorobenzoyl)‐5‐ethylthiophen‐2‐yl]benzamide, C20H16ClNO2S, (I), N‐[3‐(2‐chlorobenzoyl)‐5‐ethylthiophen‐2‐yl]‐4‐phenylbenzamide, C26H20ClNO2S, (II), and 2‐bromo‐N‐[3‐(2‐chlorobenzoyl)‐5‐ethylthiophen‐2‐yl]benzamide, C20H15BrClNO2S, (III), the molecules are disordered over two sets of atomic sites, with occupancies of 0.894 (8) and 0.106 (8) in (I), 0.832 (5) and 0.168 (5) in (II), and 0.7006 (12) and 0.2994 (12) in (III). In each of N‐[3‐(2‐chlorobenzoyl)‐5‐ethylthiophen‐2‐yl]‐2‐iodobenzamide, C20H15ClINO2S, (IV), and N‐[3‐(2‐chlorobenzoyl)‐5‐ethylthiophen‐2‐yl]‐2‐methoxybenzamide, C21H18ClNO3S, (V), the molecules are fully ordered, but in N‐[3‐(2‐chlorobenzoyl)‐5‐ethylthiophen‐2‐yl]‐2,6‐difluorobenzamide, C20H14ClF2NO2S, (VI), which crystallizes with Z′ = 2 in the space group C2/c, one of the two independent molecules is fully ordered, while the other is disordered over two sets of atomic sites having occupancies of 0.916 (3) and 0.084 (3). All of the molecules in compounds (I)–(VI) exhibit an intramolecular N—H…O hydrogen bond. The molecules of (I) and (VI) are linked by C—H…O hydrogen bonds to form finite zero‐dimensional dimers, which are cyclic in (I) and acyclic in (VI), those of (III) are linked by C—H…π(arene) hydrogen bonds to form simple chains, and those of (IV) and (V) are linked into different types of chains of rings, built in each case from a combination of C—H…O and C—H…π(arene) hydrogen bonds. Two C—H…O hydrogen bonds link the molecules of (II) into sheets containing three types of ring. In benzotriazol‐1‐yl 3,4‐dimethoxybenzoate, C15H13N3O4, (VII), the benzoate component is planar and makes a dihedral angle of 84.51 (6)° with the benzotriazole unit. Comparisons are made with related compounds. 相似文献
11.
《Acta Crystallographica. Section C, Structural Chemistry》2017,73(10):784-790
The reaction of 5‐chloro‐3‐methyl‐1‐phenyl‐1H‐pyrazole‐4‐carbaldehyde and N‐benzylmethylamine under microwave irradiation gives 5‐[benzyl(methyl)amino]‐3‐methyl‐1‐phenyl‐1H‐pyrazole‐4‐carbaldehyde, C19H19N3O, (I). Subsequent reactions under basic conditions, between (I) and a range of acetophenones, yield the corresponding chalcones. These undergo cyclocondensation reactions with hydrazine to produce reduced bipyrazoles which can be N‐formylated with formic acid or N‐acetylated with acetic anhydride. The structures of (I) and of representative examples from this reaction sequence are reported, namely the chalcone (E )‐3‐{5‐[benzyl(methyl)amino]‐3‐methyl‐1‐phenyl‐1H‐pyrazol‐4‐yl}‐1‐(4‐bromophenyl)prop‐2‐en‐1‐one, C27H24BrN3O, (II), the N‐formyl derivative (3RS )‐5′‐[benzyl(methyl)amino]‐3′‐methyl‐1′,5‐diphenyl‐3,4‐dihydro‐1′H ,2H‐[3,4′‐bipyrazole]‐2‐carbaldehyde, C28H27N5O, (III), and the N‐acetyl derivative (3RS )‐2‐acetyl‐5′‐[benzyl(methyl)amino]‐5‐(4‐methoxyphenyl)‐3′‐methyl‐1′‐phenyl‐3,4‐dihydro‐1′H ,2H‐[3,4′‐bipyrazole], which crystallizes as the ethanol 0.945‐solvate, C30H31N5O2·0.945C2H6O, (IV). There is significant delocalization of charge from the benzyl(methyl)amino substituent onto the carbonyl group in (I), but not in (II). In each of (III) and (IV), the reduced pyrazole ring is modestly puckered into an envelope conformation. The molecules of (I) are linked by a combination of C—H…N and C—H…π(arene) hydrogen bonds to form a simple chain of rings; those of (III) are linked by a combination of C—H…O and C—H…N hydrogen bonds to form sheets of R 22(8) and R 66(42) rings, and those of (IV) are linked by a combination of O—H…N and C—H…O hydrogen bonds to form a ribbon of edge‐fused R 24(16) and R 44(24) rings. 相似文献
12.
Badiadka Narayana Hemmige S. Yathirajan Ravindranath S. Rathore Christopher Glidewell 《Acta Crystallographica. Section C, Structural Chemistry》2016,72(9):664-669
4‐Antipyrine [4‐amino‐1,5‐dimethyl‐2‐phenyl‐1H‐pyrazol‐3(2H)‐one] and its derivatives exhibit a range of biological activities, including analgesic, antibacterial and anti‐inflammatory, and new examples are always of potential interest and value. 2‐(4‐Chlorophenyl)‐N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)acetamide, C19H18ClN3O2, (I), crystallizes with Z′ = 2 in the space group P, whereas its positional isomer 2‐(2‐chlorophenyl)‐N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)acetamide, (II), crystallizes with Z′ = 1 in the space group C2/c; the molecules of (II) are disordered over two sets of atomic sites having occupancies of 0.6020 (18) and 0.3980 (18). The two independent molecules of (I) adopt different molecular conformations, as do the two disorder components in (II), where the 2‐chlorophenyl substituents adopt different orientations. The molecules of (I) are linked by a combination of N—H…O and C—H…O hydrogen bonds to form centrosymmetric four‐molecule aggregates, while those of (II) are linked by the same types of hydrogen bonds forming sheets. The related compound N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)‐2‐(3‐methoxyphenyl)acetamide, C20H21N3O3, (III), is isomorphous with (I) but not strictly isostructural; again the two independent molecules adopt different molecular conformations, and the molecules are linked by N—H…O and C—H…O hydrogen bonds to form ribbons. Comparisons are made with some related structures, indicating that a hydrogen‐bonded R22(10) ring is the common structural motif. 相似文献
13.
Jairo Quiroga Jaime Glvez Justo Cobo Christopher Glidewell 《Acta Crystallographica. Section C, Structural Chemistry》2013,69(8):915-919
In the molecules of both methyl (1RS,3SR,3aRS,6aSR)‐1‐methyl‐3‐(3‐methyl‐1‐phenyl‐1H‐pyrazol‐4‐yl)‐4,6‐dioxo‐5‐phenyloctahydropyrrolo[3,4‐c]pyrrole‐1‐carboxylate, C25H24N4O4, (I), and methyl (1RS,3SR,3aRS,6aSR)‐5‐(4‐chlorophenyl)‐1‐methyl‐3‐(3‐methyl‐1‐phenyl‐1H‐pyrazol‐4‐yl)‐4,6‐dioxooctahydropyrrolo[3,4‐c]pyrrole‐1‐carboxylate, C25H23ClN4O4, (II), the two rings of the pyrrolopyrrole fragment are both nonplanar, with conformations close to half‐chair forms. The overall conformations of the molecules of (I) and (II) are very similar, apart from the orientation of the ester function. The molecules of (I) are linked into sheets by a combination of an N—H...π(pyrrole) hydrogen bond and three independent C—H...O hydrogen bonds. The molecules of (II) are also linked into sheets, which are generated by a combination of an N—H...N hydrogen bond and two independent C—H...O hydrogen bonds, weakly augmented by a C—H...π(arene) hydrogen bond. 相似文献
14.
Tholappanavara H. Suresha Kumara Gopalpur Nagendrappa Nanjappa Chandrika Haliwana B. V. Sowmya Manpreet Kaur Jerry P. Jasinski Christopher Glidewell 《Acta Crystallographica. Section C, Structural Chemistry》2016,72(9):670-678
Hydrazone derivatives exhibit a wide range of biological activities, while pyrazolo[3,4‐b]quinoline derivatives, on the other hand, exhibit both antimicrobial and antiviral activity, so that all new derivatives in these chemical classes are potentially of value. Dry grinding of a mixture of 2‐chloroquinoline‐3‐carbaldehyde and 4‐methylphenylhydrazinium chloride gives (E)‐1‐[(2‐chloroquinolin‐3‐yl)methylidene]‐2‐(4‐methylphenyl)hydrazine, C17H14ClN3, (I), while the same regents in methanol in the presence of sodium cyanoborohydride give 1‐(4‐methylphenyl)‐4,9‐dihydro‐1H‐pyrazolo[3,4‐b]quinoline, C17H15N3, (II). The reactions between phenylhydrazinium chloride and either 2‐chloroquinoline‐3‐carbaldehyde or 2‐chloro‐6‐methylquinoline‐3‐carbaldehyde give, respectively, 1‐phenyl‐1H‐pyrazolo[3,4‐b]quinoline, C16H11N3, (III), which crystallizes in the space group Pbcn as a nonmerohedral twin having Z′ = 3, or 6‐methyl‐1‐phenyl‐1H‐pyrazolo[3,4‐b]quinoline, C17H13N3, (IV), which crystallizes in the space group R. The molecules of compound (I) are linked into sheets by a combination of N—H…N and C—H…π(arene) hydrogen bonds, and the molecules of compound (II) are linked by a combination of N—H…N and C—H…π(arene) hydrogen bonds to form a chain of rings. In the structure of compound (III), one of the three independent molecules forms chains generated by C—H…π(arene) hydrogen bonds, with a second type of molecule linked to the chains by a second C—H…π(arene) hydrogen bond and the third type of molecule linked to the chain by multiple π–π stacking interactions. A single C—H…π(arene) hydrogen bond links the molecules of compound (IV) into cyclic centrosymmetric hexamers having (S6) symmetry, which are themselves linked into a three‐dimensional array by π–π stacking interactions. 相似文献
15.
Edwar Corts Rodrigo Abonía Justo Cobo Christopher Glidewell 《Acta Crystallographica. Section C, Structural Chemistry》2014,70(6):617-621
In the title compound, C29H35ClN4O2, the bond lengths provide evidence for aromatic delocalization in the pyrazole ring but bond fixation in the fused imidazole ring, and the octyl chain is folded, rather than adopting an all‐trans chain‐extended conformation. A combination of N—H...N, C—H...N and C—H...O hydrogen bonds links the molecules into sheets, in which the hydrogen bonds occupy the central layer with the tert‐butyl and octyl groups arranged on either side, such that the closest contacts between adjacent sheets involve only the octyl groups. Comparisons are made with the supramolecular assembly in some simpler analogues. 相似文献
16.
Qiang Li Hui‐Ting Wang Lin Zhou 《Acta Crystallographica. Section C, Structural Chemistry》2015,71(2):93-96
A new tetrazole–metal supramolecular compound, di‐μ‐chlorido‐bis(trichlorido{1‐[(1H‐tetrazol‐5‐yl‐κN2)methyl]‐1,4‐diazoniabicyclo[2.2.2]octane}cadmium(II)), [Cd2(C8H16N6)2Cl8], has been synthesized and structurally characterized by single‐crystal X‐ray diffraction. In the structure, each CdII cation is coordinated by five Cl atoms (two bridging and three terminal) and by one N atom from the 1‐[(1H‐tetrazol‐5‐yl)methyl]‐1,4‐diazoniabicyclo[2.2.2]octane ligand, adopting a slightly distorted octahedral coordination geometry. The bridging bicyclo[2.2.2]octane and chloride ligands link the CdII cations into one‐dimensional ribbon‐like N—H...Cl hydrogen‐bonded chains along the b axis. An extensive hydrogen‐bonding network formed by N—H...Cl and C—H...Cl hydrogen bonds, and interchain π–π stacking interactions between adjacent tetrazole rings, consolidate the crystal packing, linking the poymeric chains into a three‐dimensional supramolecular network. 相似文献
17.
Lina M. Acosta Quintero Alirio Palma Justo Cobo Christopher Glidewell 《Acta Crystallographica. Section C, Structural Chemistry》2016,72(7):549-554
Compounds containing the tricyclic dibenzo[b,e]azepine system have potential activity in the treatment of a number of diseases. Continuing with our studies on the synthesis of new small and potentially bioactive molecules, a synthetic route, involving acid‐catalysed intramolecular Friedel–Crafts cyclization, to the readily separable diastereoisomers of 11‐ethyl‐6,11‐dihydro‐5H‐dibenzo[b,e]azepine‐6‐carboxamide, a potentially useful precursor in the synthesis of analogues of some anti‐allergenic, antidepressant and antihistaminic drugs currently in use, has been developed starting from 2‐allylphenylamine and methyl 2‐bromo‐2‐phenylacetate and proceeding via racemic methyl 2‐[(2‐allylphenyl)amino]‐2‐phenylacetate (A) and racemic 2‐[(2‐allylphenyl)amino]‐2‐phenylacetamide (B), to give the two diastereoisomers (I) and (II), C17H18N2O. Isomers (I) and (II), and their precursors (A) and (B), have all been fully characterized spectroscopically. Structure analysis of the minor isomer (I) shows that it has the (6RS,11RS) configuration, and that the azepine ring adopts a conformation intermediate between the boat and twist‐boat forms, with the carboxamide and ethyl substituents both occupying quasi‐equatorial sites. The molecules of (I) are linked by a combination of N—H…O, N—H…π(arene) and C—H…π(arene) hydrogen bonds to form complex sheets. Comparisons are made with the structures of some related compounds. 相似文献
18.
Andrzej K. Gzella Marcin Kowiel Aneta Suse Magdalena N. Wojtyra Roman Lesyk 《Acta Crystallographica. Section C, Structural Chemistry》2014,70(8):812-816
The structures of 5‐(2‐hydroxyethyl)‐2‐[(pyridin‐2‐yl)amino]‐1,3‐thiazolidin‐4‐one, C10H11N3O2S, (I), and ethyl 4‐[(4‐oxo‐1,3‐thiazolidin‐2‐yl)amino]benzoate, C12H12N2O3S, (II), which are identical to the entries with refcodes GACXOZ [Váňa et al. (2009). J. Heterocycl. Chem. 46 , 635–639] and HEGLUC [Behbehani & Ibrahim (2012). Molecules, 17 , 6362–6385], respectively, in the Cambridge Structural Database [Allen (2002). Acta Cryst. B 58 , 380–388], have been redetermined at 130 K. This structural study shows that both investigated compounds exist in their crystal structures as the tautomer with the carbonyl–imine group in the five‐membered heterocyclic ring and an exocyclic amine N atom, rather than the previously reported tautomer with a secondary amide group and an exocyclic imine N atom. The physicochemical and spectroscopic data of the two investigated compounds are the same as those of GACXOZ and HEGLUC, respectively. In the thiazolidin‐4‐one system of (I), the S and chiral C atoms, along with the hydroxyethyl group, are disordered. The thiazolidin‐4‐one fragment takes up two alternative locations in the crystal structure, which allows the molecule to adopt R and S configurations. The occupancy factors of the disordered atoms are 0.883 (2) (for the R configuration) and 0.117 (2) (for the S configuration). In (I), the main factor that determines the crystal packing is a system of hydrogen bonds, involving both strong N—H...N and O—H...O and weak C—H...O hydrogen bonds, linking the molecules into a three‐dimensional hydrogen‐bond network. On the other hand, in (II), the molecules are linked via N—H...O hydrogen bonds into chains. 相似文献
19.
《Acta Crystallographica. Section C, Structural Chemistry》2018,74(9):1007-1019
Two series of a total of ten cocrystals involving 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine with various carboxylic acids have been prepared and characterized by single‐crystal X‐ray diffraction. The pyrimidine unit used for the cocrystals offers two ring N atoms (positions N1 and N3) as proton‐accepting sites. Depending upon the site of protonation, two types of cations are possible [Rajam et al. (2017). Acta Cryst. C 73 , 862–868]. In a parallel arrangement, two series of cocrystals are possible depending upon the hydrogen bonding of the carboxyl group with position N1 or N3. In one series of cocrystals, i.e. 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–3‐bromothiophene‐2‐carboxylic acid (1/1), 1 , 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–5‐chlorothiophene‐2‐carboxylic acid (1/1), 2 , 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–2,4‐dichlorobenzoic acid (1/1), 3 , and 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–2‐aminobenzoic acid (1/1), 4 , the carboxyl hydroxy group (–OH) is hydrogen bonded to position N1 (O—H…N1) of the corresponding pyrimidine unit (single point supramolecular synthon). The inversion‐related stacked pyrimidines are doubly bridged by the carboxyl groups via N—H…O and O—H…N hydrogen bonds to form a large cage‐like tetrameric unit with an R42(20) graph‐set ring motif. These tetrameric units are further connected via base pairing through a pair of N—H…N hydrogen bonds, generating R22(8) motifs (supramolecular homosynthon). In the other series of cocrystals, i.e. 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–5‐methylthiophene‐2‐carboxylic acid (1/1), 5 , 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–benzoic acid (1/1), 6 , 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–2‐methylbenzoic acid (1/1), 7 , 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–3‐methylbenzoic acid (1/1), 8 , 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–4‐methylbenzoic acid (1/1), 9 , and 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–4‐aminobenzoic acid (1/1), 10 , the carboxyl group interacts with position N3 and the adjacent 4‐amino group of the corresponding pyrimidine ring via O—H…N and N—H…O hydrogen bonds to generate the robust R22(8) supramolecular heterosynthon. These heterosynthons are further connected by N—H…N hydrogen‐bond interactions in a linear fashion to form a chain‐like arrangement. In cocrystal 1 , a Br…Br halogen bond is present, in cocrystals 2 and 3 , Cl…Cl halogen bonds are present, and in cocrystals 5 , 6 and 7 , Cl…O halogen bonds are present. In all of the ten cocrystals, π–π stacking interactions are observed. 相似文献
20.
《Acta Crystallographica. Section C, Structural Chemistry》2017,73(12):1040-1049
A four‐stage reaction sequence has been designed and developed for the synthesis of highly functionalized enolate esters as key building blocks for the synthesis of novel heteropolycyclic compounds of potential pharmaceutical value. The sequence starts with simple commercially available indoles and proceeds via 3‐(indol‐3‐yl)‐3‐oxopropanenitriles, which react with 2‐bromobenzaldehyde to form the corresponding chalcones; these are readily reduced to dihydrochalcones, which are in turn acylated to form the enolate esters. The compounds in this sequence have been characterized by IR and 1H and 13C NMR spectroscopy, by mass spectrometry and by elemental analysis. The molecular and supramolecular structures are reported for representative examples, namely (E )‐3‐(2‐bromophenyl)‐2‐(1‐methyl‐1H‐indole‐3‐carbonyl)acrylonitrile, C19H13BrN2O, (Ib ), (2RS )‐2‐(2‐bromobenzyl)‐3‐(1‐methyl‐1H‐indol‐3‐yl)‐3‐oxopropanenitrile, C19H15BrN2O, (IIb ), and (2RS )‐3‐(1‐benzyl‐1H‐indol‐3‐yl)‐2‐(2‐bromobenzyl)‐3‐oxopropanenitrile, C25H19BrN2O, (IIc ), the latter two of which crystallize with Z ′ = 2, and (E )‐1‐(1‐acetyl‐1H‐indol‐3‐yl)‐3‐(2‐bromophenyl)‐2‐cyanoprop‐1‐en‐1‐yl acetate, C22H17BrN2O, (III), and (E )‐1‐(1‐benzyl‐1H‐indol‐3‐yl)‐3‐(2‐bromophenyl)‐2‐cyanoprop‐1‐en‐1‐yl benzoate, C32H23BrN2O, (IV). The structure of the related chalcone (E )‐2‐benzoyl‐3‐(2‐bromophenyl)prop‐2‐enenitrile, (V), has been redetermined at 100 K, where it is monoclinic, as opposed to the triclinic form reported at ambient temperature. 相似文献