首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here, we combine T7 exonuclease (T7 Exo) signal amplification and polystyrene nanoparticle (PS NP) amplification to develop novel fluorescence polarization (FP) aptasensors. The binding of a target/open aptamer hairpin complex or a target/single‐stranded aptamer complex to dye‐labeled DNA bound to PS NPs, or the self‐assembly of two aptamer subunits (one of them labeled with a dye) into a target/aptamer complex on PS NPs leads to the cyclic T7 Exo‐catalyzed digestion of the dye‐labeled DNA or the dye‐labeled aptamer subunit. This results in a substantial decrease in the FP value for the amplified sensing process. Our newly developed aptasensors exhibit a sensitivity five orders of magnitude higher than that of traditional homogeneous aptasensors and a high specificity for the target molecules. These distinct advantages of our proposed assay protocol make it a generic platform for the design of amplified aptasensors for ultrasensitive detection of various target molecules.  相似文献   

2.
Longitudinal and transverse relaxation times of multicomponent nanoparticle (NP) chains are investigated for their potential use as multifunctional imaging agents in magnetic resonance imaging (MRI). Gold NPs (ca. 5 nm) are arranged linearly along double‐stranded DNA, creating gold NP chains. After cutting gold NP chains with restriction enzymes (EcoRI or BamHI), multicomponent NP chains are formed through a ligation reaction with enzyme‐cut, superparamagnetic NP chains. We evaluate the changes in relaxation times for different constructs of gold–iron oxide NP chains and gold–cobalt iron oxide NP chains using 300 MHz 1H NMR. In addition, the mechanism of proton relaxation for multicomponent NP chains is examined. The results indicate that relaxation times are dependent on the one‐dimensional structure and the amount of superparamagnetic NP chains present in the multicomponent constructs. Multicomponent NP chains arranged on double‐stranded DNA provide a feasible method for fabrication of multifunctional imaging agents that improve relaxation times effectively for MRI applications.  相似文献   

3.
Lin YW  Huang CC  Chang HT 《The Analyst》2011,136(5):863-871
Monitoring the levels of potentially toxic metal (PTM) ions (e.g., Hg(2+), Pb(2+), Cu(2+)) in aquatic ecosystems is important because these ions can have severe effects on human health and the environment. Gold (Au) nanomaterials are attractive sensing materials because of their unique size- and shape-dependent optical properties. This review focuses on optical assays for Hg(2+), Pb(2+), and Cu(2+) ions using functionalized Au nanomaterials. The syntheses of functionalized Au nanomaterials are discussed. We briefly review sensing approaches based on changes in absorbance resulting from metal ion-induced aggregation of Au nanoparticles (NPs) or direct deposition of metal ions onto Au NPs. The super-quenching properties of Au NPs allow them to be employed in 'turn on' and 'turn off' fluorescence approaches for the sensitive and selective detection of Hg(2+), Pb(2+), and Cu(2+) ions. We highlight approaches based on fluorescence quenching through analyte-induced aggregation or the formation of metallophilic complexes of Au nanodots (NDs). We discuss the roles of several factors affecting the selectivity and sensitivity of the nanosensors toward the analytes: the size of the Au nanomaterial, the length and sequence of the DNA or the nature of the thiol, the surface density of the recognition ligand, and the ionic strength and pH of the buffer solution. In addition, we emphasize the potential of using new nanomaterials (e.g., fluorescent silver nanoclusters) for the detection of PTM ions.  相似文献   

4.
Metal‐nanoparticles (M‐NPs) have been widely applied in catalysis, imaging, sensing and medicine. One particularly active area of this research is the modification of the surface of the nanoparticles to prevent aggregation through the coordination of ligands. N‐Heterocyclic carbenes (NHCs) have emerged as suitable ligands for this purpose due to their affinity to the metals and their strongly electron donating nature. A number of rationally designed NHC‐modified M‐NPs have been developed using strategies based on metal complex decomposition and ligand exchange. Herein, NHC‐stabilized M‐NPs based on a range of transition metals, especially the recent advances, were summarized.  相似文献   

5.
A new and facile method for the preparation of single‐walled carbon nanotubes (SWCNTs) decorated with Cu nanoparticles (CuNPs) formed on a double‐stranded DNA template in aqueous solution has been developed. A specially designed synthetic DNA sequence, containing a single‐stranded domain for the dispersion of carbon nanotubes and double‐stranded domains for the selective growth of CuNPs, was utilized. The final SWCNT/CuNP hybrids were characterized using fluorescence spectroscopy and transmission electron microscopy. The analyses clearly demonstrated the selective formation of uniform CuNPs on the carbon nanotube scaffold.  相似文献   

6.
There are only a few systematic rules about how to selectively control the formation of DNA‐templated metal nanoparticles (NPs) by varying sequence combinations of double‐stranded DNA (dsDNA), although many attempts have been made. Herein, we develop a facile method for sequence‐dependent formation of fluorescent CuNPs by using dsDNA as templates. Compared with random sequences, AT sequences are better templates for highly fluorescent CuNPs. Other specific sequences, for example, GC sequences, do not induce the formation of CuNPs. These results shed light on directed DNA metallization in a sequence‐specific manner. Significantly, both the fluorescence intensity and the fluorescence lifetime of CuNPs can be tuned by the length or the sequence of dsDNA. In order to demonstrate the promising practicality of our findings, a sensitive and label‐free fluorescence nuclease assay is proposed.  相似文献   

7.
《中国化学会会志》2017,64(11):1250-1258
Gold nanoparticles provide promising applications based on their versatile properties of electromagnetic scattering and absorption and the capability of photothermal transduction relying on their size and shape. Because of their high tolerance to the environment and their excellent biocompatibility, gold nanoparticles are the most recognized nanomaterial applied in biomedicine. Deoxyribonucleic acid (DNA) is a native biomaterial that stores genetic information in living organisms. Naturally, DNA can be combined with gold nanoparticles for a variety of biomedical purposes. For example, the reversible hydrogen bonding of the complementary double‐stranded structures has been employed to serve as a gate keeper for the control of drug release on demand. Besides, the complementary hybridization behavior has given the specific recognition in nucleic acid for sensing feature. Accordingly, this mini‐review describes how DNA–gold nanoconjugates have been formulated and aimed for drug release and sensing analysis as well as the hybrids of aptamer–gold analogy for biomedical studies. These nanoconjugates show the potential for preclinical and clinical treatments.  相似文献   

8.
The widespread application of nanoparticles (NPs) in recent times has caused concern because of their effects in biological systems. Although NPs can be produced naturally, industrially synthesized NPs affect the metabolism of a given organism because of their high reactivity. The biotransformation of NPs involves different processes, including aggregation/agglomeration, and reactions with biomolecules that will be reflected in their toxicity. Several analytical techniques, including inductively coupled plasma mass spectrometry (ICP‐MS), have been used for characterizing and quantifying NPs in biological samples. In fact, in addition to providing information regarding the morphology and concentration of NPs, ICP‐MS‐based platforms, such as liquid chromatography/ICP‐MS, single‐particle ICP‐MS, field‐flow fractionation (asymmetrical flow field‐flow fractionation)‐ICP‐MS, and laser ablation‐ICP‐MS, yield elemental information about molecules. Furthermore, such information together with speciation analysis enlarges our understanding of the interaction between NPs and biological organisms. This study reports the contribution of ICP‐MS‐based platforms as a tool for evaluating NPs in distinct biological samples by providing an additional understanding of the behavior of NPs and their toxicity in these organisms.  相似文献   

9.
Lanthanide (Ln3+)‐doped luminescent nanoparticles (NPs) with emission in the second near‐infrared (NIR‐II) biological window have shown great promise but their applications are currently limited by the low absorption efficiency of Ln3+ owing to the parity‐forbidden 4f→4f electronic transition. Herein, we developed a strategy for the controlled synthesis of a new class of NIR‐II luminescent nanoprobes based on Ce3+/Er3+ and Ce3+/Nd3+ co‐doped CaS NPs, which can be effectively excited by using a low‐cost blue light‐emitting diode chip. Through sensitization by the allowed 4f→5d transition of Ce3+, intense NIR‐II luminescence from Er3+ and Nd3+ with quantum yields of 9.3 % and 7.7 % was achieved, respectively. By coating them with a layer of amphiphilic phospholipids, these NPs exhibit excellent stability in water and can be exploited as sensitive NIR‐II luminescent nanoprobes for the accurate detection of an important disease biomarker, xanthine, with a detection limit of 32.0 nm .  相似文献   

10.
A copper metal–organic framework nanoparticles (Cu‐MOF‐NPs) synthesized via simple technique. The prepared Cu‐MOF‐NPs nanoparticles were further characterized using 1H‐NMR, FE‐SEM/EDX and thermal study (DSC/TGA). The FE‐SEM/EDX, thermal analysis, and NMR spectrum data with the other analysis support the nano‐Cu‐MOF structure and the monomeric unit (n[Cu (AIP)2(APY)(H2O)2].4H2O) of Cu‐MOF‐NPs. The photoluminescence (PL) studies of triiodothyronine hormone (T3) based on the prepared Cu‐MOF‐NPs investigated. The results revealed that the Cu‐MOF‐NPs might be used as a biosensor in the determination of triiodothyronine hormone (T3) in biological fluids through a significant quenching of the photoluminescence intensity of Cu‐MOF‐NPs at excitation wavelength 492 nm. The calibration plot achieved over the concentration range 0.0–200.0 ng/dL T3 hormone with a correlation coefficient 0.996 and limit of detection (LOD) and quantification (LOQ) 0.198 and 0.60 ng/dL, respectively. The PL spectra are indicating that Cu‐MOF‐NPs has highly selective sensing properties for T3 hormone without interfering with other human many hormones types. This approach considered a promising analytical tool for early diagnosis of the cases of thyroid disease. The mechanism of quenching between the Cu‐MOF‐NPs, and T3 hormone studied. The mechanism was a dynamic type and obtained due to the energy transfer mechanism.  相似文献   

11.
Nucleic acid probes in living organisms play an essential role in therapeutics and diagnosis.Through the imaging and sensing of nucleic acid probes in complex biological matrices,a variety of diseases-related biological process,pathogenic process,or pharmacological responses to a therapeutic intervention have been discovered.However,a critical challenge of nucleic acid probes applied in complex matrices lies in enhancing the stability of nucleic acid probes,especially when it suffers from nuclease degradation and protein adsorption.In order to enhance the application of nucleic acid nanoprobes in complex matrices,great efforts have been devoted to improving the stability of probes operated in complex media,including construction of nucleic acid nanoprobes with nuclease resistance and protein adsorption resistance,sample pretreatment,anti-biofouling and signal correction.In this review,we aim to summarize recent advances in the stability of nucleic acid nanoprobes in complex matrices,including the methods of enhancing the stability of probes or signals,and the application of nucleic acid nanoprobes for disease diagnosis.  相似文献   

12.
Gene therapy has immense potential as a therapeutic approach to serious diseases. However, efficient delivery and real‐time tracking of gene therapeutic agents have not been solved well for successful gene‐based therapeutics. Herein we present a versatile gene‐delivery strategy for efficient and visualized delivery of therapeutic genes into the targeted nucleus. We developed an integrin‐targeted, cell‐permeable, and nucleocytoplasmic trafficking peptide‐conjugated AIEgen named TDNCP for the efficient and sequential targeted delivery of an antisense single‐stranded DNA oligonucleotide (ASO) and tracking of the delivery process into the nucleus. As compared with TDNCP/siRNA‐NPs (siRNA functions mainly in the cytoplasm), TDNCP/ASO‐NPs (ASO functions mainly in the nucleus) exhibited a better interference effect, which further indicates that TDNCP is a nucleus‐targeting vector. Moreover, TDNCP/ASO‐NPs showed a favorable tumor‐suppressive effect in vivo.  相似文献   

13.
Ion sensors based on colloidal nanoparticles (NPs), either as actively ion‐sensing NPs or as nanoscale carrier systems for organic ion‐sensing fluorescent chelators typically require a charged surface in order to be colloidally stable. We demonstrate that this surface charge significantly impacts the ion binding and affects the read‐out. Sensor read‐out should be thus not determined by the bulk ion concentration, but by the local ion concentration in the nano‐environment of the NP surface. We present a conclusive model corroborated by experimental data that reproduces the strong distance‐dependence of the effect. The experimental data are based on the capability of tuning the distance of a pH‐sensitive fluorophore to the surface of NPs in the nanometer (nm) range. This in turn allows for modification of the effective acid dissociation constant value (its logarithmic form, pKa) of analyte‐sensitive fluorophores by tuning their distance to the underlying colloidal NPs.  相似文献   

14.
Gold nanoparticles (Au NPs) assembled through Au?S covalent bonds have been widely used in biomolecule‐sensing technologies. However, during the process, detection distortions caused by high levels of thiol compounds can still significantly influence the result and this problem has not really been solved. Based on the higher stability of Au?Se bonds compared to Au?S bonds, we prepared selenol‐modified Au NPs as an Au‐Se nanoplatform (NPF). Compared with the Au‐S NPF, the Au‐Se NPF exhibits excellent anti‐interference properties in the presence of millimolar levels of glutathione (GSH). Such an Au‐Se NPF that can effectively avoid detection distortions caused by high levels of thiols thus offers a new perspective in future nanomaterial design, as well as a novel platform with higher stability and selectivity for the in vivo application of chemical sensing and clinical therapies.  相似文献   

15.
《中国化学》2018,36(9):875-885
In recent years, bio‐nanopore and solid‐state nanopore have been greatly improved for molecule bio‐sensing. Whereas, the development of this scientific field seems to have encountered a bottleneck due to their respective limitations. The small pore size of the former impedes the detection of large single molecule, and the latter is difficult to achieve similar accuracy and functional control. DNA origami plays a novel role to bring more opportunities for the development of nanopore technology since it is relatively easy to synthesize and modify. This review mainly focuses on introducing the DNA origami nanopore fabrication methods, characterization and application. Meanwhile, the challenges in the present DNA origami nanopore research are also discussed.  相似文献   

16.
Sensors based on responsive photonic hydrogels have recently attracted considerable attention for visual medical diagnostics, pharmaceutical bioassays, and environmental monitoring. However, the use of these promising materials for the detection of nanoparticles (NPs) has never been explored so far, although the sensing of nanoobjects is a rapidly evolving area of research. To address this issue, we have combined the concepts of inverse‐opal hydrogels and nanoparticle‐imprinted polymers. In this way, we could obtain a NP‐imprinted photonic hydrogel consisting of a three‐dimensional, highly ordered poly(methacrylic acid) macroporous array, in which nanocavities complementary to the target NPs, in this case colloidal quantum dots, are distributed. This novel type of NP‐imprinted photonic hydrogel sensor was shown to display high sensitivity and selectivity, thus opening new prospects for the development of equipment‐free and cost‐efficient sensing devices for NPs.  相似文献   

17.
Nanoparticles (NPs) consisting of biodegradable and biocompatible polymers may have the ability to deliver a cargo to specific tissue, cell type, and organelle. Various diseases, which are linked to mitochondrial genome (mtDNA) mutations and have no effective treatments, may be approached by gene therapy strategies. In this study, we adapted the recently developed mitochondria delivering polypeptide‐peptide nanoparticles (PoP‐NPs) system to carry an oligonucleotide cargo to the proximity of the mitochondria. PoP‐NPs are formulated by self‐assembly of the negatively charged polypeptide, poly gamma glutamic acid (γ‐PGA), with an amphiphilic and cationic β‐sheet peptide (PFK). Here, we show that PFK interacts favorably with oligonucleotides and thereby enables the formation of DNA‐loaded PoP‐NPs (DNA‐PoP‐NPs). DNA‐PoP‐NPs could be assembled with different peptide to oligonucleotide (N/P) ratios, and their targeting to the proximity of mitochondria in cell culture could be facilitated through NPs coating with PFK peptide.  相似文献   

18.
Metal nanoparticles (NPs) exhibit several unique physicochemical properties, including redox activity, surface plasmon resonance, ability to quench fluorescence, biocompatibility, or a high surface-to-volume ratio. They are being increasingly used in analysis and preconcentration of thiol containing compounds, because they are able to spontaneously form a stable Au/Ag/Cu–S dative bond. They thus find wide application in environmental and particularly in medical science, especially in the analysis of biological thiols, the endogenous compounds that play a significant role in many biological systems. In this review article, we provide an overview of various types of NPs that have been applied in analysis and preconcentration of biological thiols, mainly in human biological fluids. We first discuss shortly the types of NPs and their synthesis, properties, and their ability to interact with thiol compounds. Then we outline the sample preconcentration and analysis methods that were used for this purpose with special emphasis on optical, electrochemical, and separation techniques.  相似文献   

19.
In this study, a new type of localized surface plasmon resonance (LSPR) sensing substrate for phosphopeptides was explored. It has been known that LSPR response for target species is larger in the near-infrared region (NIR) than in the visible region of the electromagnetic spectrum. Several types of noble metal nanoparticles (NPs) with NIR absorption capacities have been previously demonstrated as effective LSPR-sensing nanoprobes. Herein, we demonstrate a straightforward approach with improved sensitivity by simply using layer-by-layer (LBL) spherical Au NPs self-assembled on glass slides as the LSPR-sensing substrates that are responsive in the NIR region of the electromagnetic spectrum. The modified glass slide acquired an LSPR absorption band in the NIR, which resulted from the dipole–dipole interactions between Au NPs. To enable the chip to sense phosphopeptides, the surface of the glass chip was spin-coated with thin titania film (TiO2-Glass@Au NPs). Absorption spectrophotometry was employed as a detection tool. Tryptic digest of α-casein was used as a model sample. The feasibility of using the new LSPR approach for detecting a potential risk factor leading to cancers (i.e., phosphorylated fibrinopeptide A) directly from human serum samples was demonstrated. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) was used to confirm the results.  相似文献   

20.
This paper describes the application of plasmonics-based nanoprobes that combine the modulation of the plasmonics effect to change the surface-enhanced Raman scattering (SERS) of a Raman label and the specificity of a DNA hairpin loop sequence to recognize and discriminate a variety of molecular target sequences. Hybridization with target DNA opens the hairpin and physically separates the Raman label from the metal nanoparticle thus reducing the plasmonics effect and quenching the SERS signal of the label. We have successfully demonstrated the specificity and selectivity of the nanoprobes in the detection of a single-nucleotide polymorphism (SNP) in the breast cancer BRCA1 gene in a homogenous solution at room temperature. In addition, the potential application of plasmonics nanoprobes for quantitative DNA diagnostic testing is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号