首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel inorganic lead‐free double perovskites with improved stability are regarded as alternatives to state‐of‐art hybrid lead halide perovskites in photovoltaic devices. The recently discovered Cs2AgBiBr6 double perovskite exhibits attractive optical and electronic features, making it promising for various optoelectronic applications. However, its practical performance is hampered by the large band gap. In this work, remarkable band gap narrowing of Cs2AgBiBr6 is, for the first time, achieved on inorganic photovoltaic double perovskites through high pressure treatments. Moreover, the narrowed band gap is partially retainable after releasing pressure, promoting its optoelectronic applications. This work not only provides novel insights into the structure–property relationship in lead‐free double perovskites, but also offers new strategies for further development of advanced perovskite devices.  相似文献   

2.
Environmentally friendly halide double perovskites with improved stability are regarded as a promising alternative to lead halide perovskites. The benchmark double perovskite, Cs2AgBiBr6, shows attractive optical and electronic features, making it promising for high‐efficiency optoelectronic devices. However, the large band gap limits its further applications, especially for photovoltaics. Herein, we develop a novel crystal‐engineering strategy to significantly decrease the band gap by approximately 0.26 eV, reaching the smallest reported band gap of 1.72 eV for Cs2AgBiBr6 under ambient conditions. The band‐gap narrowing is confirmed by both absorption and photoluminescence measurements. Our first‐principles calculations indicate that enhanced Ag–Bi disorder has a large impact on the band structure and decreases the band gap, providing a possible explanation of the observed band‐gap narrowing effect. This work provides new insights for achieving lead‐free double perovskites with suitable band gaps for optoelectronic applications.  相似文献   

3.
《化学:亚洲杂志》2017,12(9):958-962
Perovskite solar cells are considered a promising technology for solar‐energy conversion, with power conversion efficiencies currently exceeding 20 %. In most of the reported devices, Spiro‐OMeTAD is used for positive‐charge extraction and transport layer. Although a number of alternative hole‐transporting materials with different aromatic or heteroaromatic fragments have already been synthesized, a cheap and well‐performing hole‐transporting material is still in high demand. In this work, a two‐step synthesis of a carbazole‐based hole‐transporting material is presented. Synthesized compounds exhibited amorphous nature, good solubility and thermal stability. The perovskite solar cells employing the newly synthesized material generated a power conversion efficiency of 16.5 % which is slightly lower than that obtained with Spiro‐OMeTAD (17.5 %). The low‐cost synthesis and high performance makes our hole‐transport material promising for applications in perovskite‐based optoelectronic devices.  相似文献   

4.
Applications of persistent luminescence phosphors as night or dark‐light vision materials in many technological fields have fueled up a growing demand for rational control over the emission profiles of the phosphors. This, however, remains a daunting challenge. Now a unique strategy is reported to fine‐tune the persistent luminescence by using all‐inorganic CsPbX3 (X=Cl, Br, and I) perovskite quantum dots (PeQDs) as efficient light‐conversion materials. Full‐spectrum persistent luminescence with wavelengths covering the entire visible spectral region is achieved through tailoring of the PeQD band gap, in parallel with narrow bandwidth of PeQDs and highly synchronized afterglow decay owing to the single energy storage source. These findings break through the limitations of traditional afterglow phosphors, thereby opening up opportunities for persistent luminescence materials for applications such as a white‐emitting persistent light source and dark‐light multicolor displays.  相似文献   

5.
Metal oxides are some of the most promising candidates as electrocatalysts for electrical‐energy‐storage (EES) systems. Particularly, perovskite and pyrochlore oxides have been intensively investigated as bifunctional electrocatalysts because of their superior catalytic activities during the oxygen‐reduction and ‐evolution reactions. However, the origin of the outstanding catalytic activities and structural changes of the materials are not clear, in part due to the difficulty in identification during electrocatalysis. In this Minireview, we present a critical overview of recent progress in understanding catalytic mechanisms of perovskite and pyrochlore oxides, highlighting the innovative in‐situ X‐ray absorption spectroscopy (XAS) analysis for electrochemical tests.  相似文献   

6.
Two‐dimensional (2D) organic–inorganic hybrid perovskite nanosheets (NSs) are attracting increasing research interest due to their unique properties and promising applications. Here, for the first time, we report the facile synthesis of single‐ and few‐layer free‐standing phenylethylammonium lead halide perovskite NSs, that is, (PEA)2PbX4 (PEA=C8H9NH3, X=Cl, Br, I). Importantly, their lateral size can be tuned by changing solvents. Moreover, these ultrathin 2D perovskite NSs exhibit highly efficient and tunable photoluminescence, as well as superior stability. Our study provides a simple and general method for the controlled synthesis of 2D perovskite NSs, which may offer a new avenue for their fundamental studies and optoelectronic applications.  相似文献   

7.
Two‐dimensional (2D) organic–inorganic hybrid perovskite nanosheets (NSs) are attracting increasing research interest due to their unique properties and promising applications. Here, for the first time, we report the facile synthesis of single‐ and few‐layer free‐standing phenylethylammonium lead halide perovskite NSs, that is, (PEA)2PbX4 (PEA=C8H9NH3, X=Cl, Br, I). Importantly, their lateral size can be tuned by changing solvents. Moreover, these ultrathin 2D perovskite NSs exhibit highly efficient and tunable photoluminescence, as well as superior stability. Our study provides a simple and general method for the controlled synthesis of 2D perovskite NSs, which may offer a new avenue for their fundamental studies and optoelectronic applications.  相似文献   

8.
Rubidium lead halides (RbPbX3), an important class of all‐inorganic metal halide perovskites, are attracting increasing attention for photovoltaic applications. However, limited by its lower Goldschmidt tolerance factor t≈0.78, all‐inorganic RbPbBr3 has not been reported. Now, the crystal structure, X‐ray diffraction (XRD) pattern, and band structure of perovskite‐phase RbPbBr3 has now been investigated. Perovskite‐phase RbPbBr3 is unstable at room temperature and transforms to photoluminescence (PL)‐inactive non‐perovskite. The structural evolution and mechanism of the perovskite–non‐perovskite phase transition were clarified in RbPbBr3. Experimentally, perovskite‐phase RbPbBr3 was realized through a dual‐source chemical vapor deposition and annealing process. These perovskite‐phase microspheres showed strong PL emission at about 464 nm. This new perovskite can serve as a gain medium and microcavity to achieve broadband (475–540 nm) single‐mode lasing with a high Q of about 2100.  相似文献   

9.
Organic–inorganic hybrid perovskites have attracted significant attention owing to their extraordinary optoelectronic properties with applications in the fields of solar energy, lighting, photodetectors, and lasers. The rational design of these hybrid materials is a key factor in the optimization of their performance in perovskite‐based devices. Herein, a mechanochemical approach is proposed as a highly efficient, simple, and reproducible method for the preparation of four types of hybrid perovskites, which were obtained in large amounts as polycrystalline powders with high purity and excellent optoelectronics properties. Two archetypal three‐dimensional (3D) perovskites (MAPbI3 and FAPbI3) were synthesized, together with a bidimensional (2D) perovskite (Gua2PbI4) and a “double‐chain” one‐dimensional (1D) perovskite (GuaPbI3), whose structure was elucidated by X‐ray diffraction.  相似文献   

10.
Although the efficiency of Dye‐sensitized and Perovskite solar cell is still below the performance level of market dominance silicon solar cells, in last few years they have grabbed significant attention because of their fabrication ease using low‐cost materials, and henceforth these cells are considered as a promising alternative to commercial photovoltaic devices. However, third generation solar cells have significant absorption in the visible region of solar spectrum, which confines their power conversion efficiency. Subsequently, the performance of current photovoltaics is significantly hampered by the transmission loss of sub‐band‐gap photons. To overcome these issues, rare earth doped luminescent materials is the favorable route followed to convert these transmitted sub‐band‐gap photons into above‐band‐gap light, where solar cells typically have significant light‐scattering effects. Moreover, the rare earth based down/up conversion material facilitates the improvement in sensitization, light‐scattering and device stability of these devices. This review provides insight into the application of various down/up conversion materials for Dye‐sensitized and perovskite solar cell applications. Additionally, the paper discusses the techniques to improve the photovoltaic performance in terms of current density and photo voltage in detail.  相似文献   

11.
The insertion of large organic cations in metal halide perovskites with reduced‐dimensional (RD) crystal structures increases crystal formation energy and regulates the growth orientation of the inorganic domains. However, the power conversion performance is curtailed by the insulating nature of the bulky cations. Now a series of RD perovskites with 2‐thiophenmethylammonium (TMA) as the intercalating cation are investigated. Compared with traditional ligands, TMA demonstrates improved electron transfer in the inorganic framework. TMA modifies the near‐band‐edge integrity of the RD perovskite, improving hole transport. A power conversion efficiency of 19 % is achieved, the highest to date for TMA‐based RD perovskite photovoltaics; these TMA devices provide a 12 % relative increase in PCE compared to control RD perovskite devices that use PEA as the intercalating ligand, a result of the improved charge transfer from the inorganic layer to the organic ligands.  相似文献   

12.
Electrospinning, as a novel nontextile filament technology, is an important method to prepare continuous nanofibers and has shown its remarkable advantages, such as a broadly applicable material system, controllable fiber size and structure, and simple process. Electrospun nanofiber membranes prepared by electrospinning have shown promising applications in many fields, such as supercapacitors, lithium‐ion batteries, and sodium‐ion batteries, owing to their large specific surface area and adjustable network pore structure. The principle of electrospinning and key points relevant to its usage in the preparation of high‐performance electrochemical energy storage materials are reviewed herein based on recent publications, particularly focusing on research progress of relative materials. Also, this review describes a distinctive conclusion and perspective on the future challenges and opportunities in electrospun nanomaterials.  相似文献   

13.
Tremendous development in the field of portable electronics and hybrid electric vehicles has led to urgent and increasing demand in the field of high‐energy storage devices. In recent years, many research efforts have been made for the development of more efficient energy‐storage devices such as supercapacitors, batteries, and fuel cells. In particular, supercapacitors have great potential to meet the demands of both high energy density and power density in many advanced technologies. For the last half decade, graphene has attracted intense research interest for electrical double‐layer capacitor (EDLC) applications. The unique electronic, thermal, mechanical, and chemical characteristics of graphene, along with the intrinsic benefits of a carbon material, make it a promising candidate for supercapacitor applications. This Review focuses on recent research developments in graphene‐based supercapacitors, including doped graphene, activated graphene, graphene/metal oxide composites, graphene/polymer composites, and graphene‐based asymmetric supercapacitors. The challenges and prospects of graphene‐based supercapacitors are also discussed.  相似文献   

14.
Tin‐based perovskites with excellent optoelectronic properties and suitable band gaps are promising candidates for the preparation of efficient lead‐free perovskite solar cells (PSCs). However, it is challenging to prepare highly stable and efficient tin‐based PSCs because Sn2+ in perovskites can be easily oxidized to Sn4+ upon air exposure. Here we report the fabrication of air‐stable FASnI3 solar cells by introducing hydroxybenzene sulfonic acid or its salt as an antioxidant additive into the perovskite precursor solution along with excess SnCl2. The interaction between the sulfonate group and the Sn2+ ion enables the in situ encapsulation of the perovskite grains with a SnCl2–additive complex layer, which results in greatly enhanced oxidation stability of the perovskite film. The corresponding PSCs are able to maintain 80 % of the efficiency over 500 h upon air exposure without encapsulation, which is over ten times longer than the best result reported previously. Our results suggest a possible strategy for the future design of efficient and stable tin‐based PSCs.  相似文献   

15.
Perovskite oxides are candidate materials in catalysis, fuel cells, thermoelectrics, and electronics, where electronic transport is vital to their use. While the fundamental transport properties of these materials have been heavily studied, there are still key features that are not well understood, including the temperature‐squared behavior of their resistivities. Standard transport models fail to account for this atypical property because Fermi surfaces of many perovskite oxides are low‐dimensional and distinct from traditional semiconductors. In this work, the low‐dimensional Fermi surfaces of perovskite oxides are chemically interpreted in terms of two‐dimensional crystal orbitals that form the conduction bands. Using SrTiO3 as a case study, the d/p‐hybridization that creates these low‐dimensional electronic structures is reviewed and connected to its fundamentally different electronic properties. A low‐dimensional band model explains several experimental transport properties, including the temperature and carrier‐density dependence of the effective mass, the carrier‐density dependence of scattering, and the temperature dependence of resistivity. This work highlights how chemical bonding influences semiconductor transport.  相似文献   

16.
Improved charge extraction and wide spectral absorption promote power conversion efficiency of perovskite solar cells (PSCs). The state‐of‐the‐art carbon‐based CsPbBr3 PSCs have an inferior power output capacity because of the large optical band gap of the perovskite film and the high energy barrier at perovskite/carbon interface. Herein, we use alkyl‐chain regulated quantum dots as hole‐conductors to reduce charge recombination. By precisely controlling alkyl‐chain length of ligands, a balance between the surface dipole induced charge coulomb repulsive force and quantum tunneling distance is achieved to maximize charge extraction. A fluorescent carbon electrode is used as a cathode to harvest the unabsorbed incident light and to emit fluorescent light at 516 nm for re‐absorption by the perovskite film. The optimized PSC free of encapsulation achieves a maximum power conversion efficiency up to 10.85 % with nearly unchanged photovoltaic performances under 80 %RH, 80 °C, or light irradiation in air.  相似文献   

17.
Perovskite nanocrystals (PNCs) are emerging luminescent materials due to their fascinating physic‐optical properties. However, their sensitive surface chemistry with organic polar solvents, oxygen, and moisture greatly hinders their developments towards practical applications. Herein we promote silica‐passivated PNCs (SP‐PNCs) by in situ hydrolyzing the surface ligands of (3‐aminopropyl) triethoxysilane. The resultant SP‐PNCs possesses a high quantum yield (QY) of 80 % and are precipitable by polar solvents, such as ethanol and acetone, without destroying their surface chemistry or losing QY, which offers an eco‐friendly and efficient method for separation, purification, and phase transfer of PNCs. Moreover, we further promoted a swelling–deswelling encapsulation process to incorporate the as‐made SP‐PNCs into non‐crosslinked polystyrene microspheres (PMs), which can largely increase the stability of the SP‐PNCs against moisture for long‐term storage.  相似文献   

18.
Perovskite nanocrystals (PNCs) are emerging luminescent materials due to their fascinating physic‐optical properties. However, their sensitive surface chemistry with organic polar solvents, oxygen, and moisture greatly hinders their developments towards practical applications. Herein we promote silica‐passivated PNCs (SP‐PNCs) by in situ hydrolyzing the surface ligands of (3‐aminopropyl) triethoxysilane. The resultant SP‐PNCs possesses a high quantum yield (QY) of 80 % and are precipitable by polar solvents, such as ethanol and acetone, without destroying their surface chemistry or losing QY, which offers an eco‐friendly and efficient method for separation, purification, and phase transfer of PNCs. Moreover, we further promoted a swelling–deswelling encapsulation process to incorporate the as‐made SP‐PNCs into non‐crosslinked polystyrene microspheres (PMs), which can largely increase the stability of the SP‐PNCs against moisture for long‐term storage.  相似文献   

19.
Silicon‐based composites have been recognized as a promising anode material for high‐energy lithium‐ion batteries (LIBs). However, the intrinsically low conductivity and the huge volume expansion during lithiation/delithiation progresses impede its further practical applications. In the past decades, numerous efforts have been made for surface and interface modification of Si‐based anodes. Among these, doping of active materials with heteroatoms is one promising method to endow silicon many unmatched electrochemical properties. In this review, we focus on the effects of heteroatom doping on the interfacial properties of Si‐based anodes, and some typical strategies for the interface doping are highlighted. We aim to give some reference for interfacial doping of Si‐based anodes in LIBs.  相似文献   

20.
The unique optoelectronic properties and promising photovoltaic applications of organolead halide perovskites have driven the exploration of facile strategies to synthesize organometal halide perovskites and corresponding hybrid materials and devices. Currently, the preparation of CH3NH3PbBr3 perovskite nanowires, especially those with porous features, is still a great challenge. An efficient self‐template‐directed synthesis of high‐quality porous CH3NH3PbBr3 perovskite nanowires in solution at room temperature using the Pb‐containing precursor nanowires as both the sacrificial template and the Pb2+ source in the presence of CH3NH3Br and HBr is now presented. The initial formation of CH3NH3PbBr3 perovskite layers on the surface of the precursor nanowires and the following dissolution of the organic component of the latter led to the formation of mesopores and the preservation of the 1D morphology. Furthermore, the perovskite nanowires are potential materials for visible‐light photodetectors with high sensitivity and stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号