首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon nanotubes (CNTs) and reduced graphene oxide (RGO) were successfully assembled by chemical reaction to obtain CNT‐d‐RGO particles. Then, a home‐made dynamic impregnating device was used to prepare hybrid CNT‐d‐RGO/polyethylene glycol (PEG). Next, the different modifiers, including CNTs, GO, CNT‐d‐RGO, PEG, and CNT‐d‐RGO/PEG, were, respectively, added into poly‐(lactic acid) (PLA) matrix via melt‐compounding. The dispersed morphology for these different modifiers within the PLA matrix was confirmed by SEM and TEM observations. Especially, compared with the identical weight ratio of CNT‐d‐RGO, the hybrid CNT‐d‐RGO/PEG within the PLA matrix exhibited an excellent exfoliated and interconnected networks morphology. Moreover, compared with pure PLA, not only the crystallinity of all PLA‐based composites notably improved, but half‐crystallization time was also shortened. Furthermore, despite the addition of different modifiers, the crystal form of PLA‐based composites remained unchanged. Noticeably, compared with those of pure PLA, the tensile stress, strain, and modulus of PLA composite added with CNT‐d‐RGO/PEG increased by 29.4%, 4.1%, and 56.1%, respectively, and the V‐notch impact strength slightly improved. In addition, compared with pure PLA, volume resistivity of the PLA composite added with 1 wt% CNT‐d‐RGO/PEG decreased by 93.1%, and its volume conductivity increased by five orders of magnitude.  相似文献   

2.
The dispersion of multiwalled carbon nanotubes (CNTs) in an ethylene propylene rubber matrix was investigated using an internal mixer. Poly(ethylene‐co‐polyvinyl acetate) (EVA) statistic copolymer was used as a dispersing agent. The effects of the concentration of the dispersing agent and the matrix viscosity on the quality of the dispersion of 1 wt % of CNTs were studied by using microscopy and rheology in the melt state. It was demonstrated that the dispersion is governed principally by the viscosity of the matrix. As expected, better dispersion was observed when the matrix exhibited a lower viscosity. The influence of the filler content on the rheological and electrical properties is presented. A Cross model with a yield stress is proposed to describe the rheological behavior of these materials, which exhibit a viscoelastic solid behavior from 1 wt % CNT content. Electrical measurement data indicate that the electrical percolation threshold was 2.9 wt %. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1597–1604, 2011  相似文献   

3.
In order to achieve dramatic improvements in the performance of rubber materials, the development of carbon nanotube (CNT)‐reinforced rubber composites was attempted. The CNT/natural rubber (NR) nanocomposite was prepared through solvent mixing on the basis of pretreatment of CNTs. Thermal properties, vulcanization characteristics, and physical and mechanical properties of the CNT/NR nanocomposites were characterized in contrast to the carbon black (CB)/NR composite. Through the addition of the CNTs treated using acid bath followed by ball milling with HRH (hydrated silica, resorcinol, and hexamethylene tetramine) bonding systems, the crystallization melting peak in differential scanning calorimetry (DSC) curves of NR weakened and the curing rate of NR slightly decreased. Meanwhile, the over‐curing reversion of CNT/NR nanocomposites was alleviated. The dispersion of the treated CNTs in the rubber matrix and interfacial bonding between them were rather good. The mechanical properties of the CNT‐reinforced NR showed a considerable increase compared to the neat NR and traditional CB/NR composite. At the same time, the CNT/NR nanocomposites exhibited better rebound resilience and dynamic compression properties. The storage modulus of the CNT/NR nanocomposites greatly exceeds that of neat NR and CB/NR composites under all temperature regions. The thermal stability of NR was also obviously improved with the addition of the treated CNTs. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Poly(cetyl trimethylammonium 4-styrenesulfonate) (PSS-CTA) was synthesized by the ionic exchange reaction of poly(sodium 4-styrenesulfonate) (PSS-Na) with cetyl trimethylammonium bromide (CTAB). It was then used as a surface modifier for carbon nanotubes (CNTs) to improve dispersion in and interfacial adhesion with a polylactide (PLA) matrix to fabricate high performance PLA/CNT nanocomposites via a solution precipitation method. The morphology, electrical conductivity, crystallization and mechanical properties of the PLA nanocomposites were investigated in detail. The results indicate that CNTs wrapped (coated) with a suitable amount of PSS-CTA dispersed in the PLA matrix homogeneously. The electrical conductivity of PLA was enhanced by up to 10 orders of magnitude with the incorporation of 1.0 wt% PSS-CTA-modified CNTs (mCNTs). The crystallization rate of PLA was improved due to the nucleation effect of mCNTs towards the crystallization of PLA, but the crystallization mechanisms and crystal structure of PLA remained unchanged with the incorporation of mCNTs. Both the tensile strength and toughness of PLA were improved by the incorporation of mCNTs, and the fracture behaviour of PLA changed from brittle e to ductile during tensile testing.  相似文献   

5.
Addition of carbon nanotubes (CNT) to Graphene (Gr) is seen to have synergistic effect as reinforcement to polymer matrix. This is possible as CNTs inhibit stacking of Gr sheets, thus providing larger surface area nanophase to get bonded with polymer matrix and providing mechanical support through load sharing and crack growth inhibition. However, tube like morphology and high aspect ratio of CNT often lead to entanglement, which restricts their effect in exfoliating Gr. The aim of the present study is to investigate the potential of ND in improving the synergistic effect of Gr-CNT hybrid as a reinforcement to epoxy matrix. This study utilizes the power of ultrasonication technique, which is very simple and scalable, for dispersing and incorporating nanofillers into epoxy matrix. Addition of ND to Gr-CNT epoxy composite improved the tensile strength from ~46% with 0.5 wt% (75Gr:25ND) to ~51% with 0.8 wt% (25Gr:25CNT:50ND) as compared to neat epoxy. While the fracture toughness improved from ~140% with 0.5 wt% (25Gr:75CNT) to 165% with 0.8 wt% (25Gr:50CNT:25ND). Fractured surfaces of composites revealed improved dispersion and strong interfacial interaction with addition of ND to Gr-CNT hybrid. NDs attaches to the surface of Gr inhibit the stacking of Gr sheets by restricting π-π stabilization. NDs also help in bridging the ends of CNTs together into long chains, thereby increasing the aspect ratio of the fiber like reinforcement. This increases the total available surface area of CNTs and Gr, to interact with epoxy matrix, improves the overall efficiency of Gr-CNT hybrid as a reinforcement, resulting into improvement in mechanical properties of the composite structure.  相似文献   

6.
A big challenge in making a composite lies in achieving individual‐nanotube dispersion of carbon nanotubes (CNTs) in a polymer matrix, without aggregation and entanglement and excellent interfacial adhesion between the CNTs and the polymers matrix. In this communication, using polyethylene glycol‐200, we successfully prepared CNT‐reinforced polyimide composites that exhibit individual‐nanotube dispertion in the matrix at high‐loading CNT's. The content of CNTs in a composite can reach 43 wt%. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Composites of carbon nanotubes (CNT) in polymeric matrices have attracted considerable attention in the research communities due to their good electrical conductivity, high stiffness and high strength at relatively low CNT contents. Effective utilization of CNT in composites depends primarily on the ability to disperse them homogeneously throughout the polymer matrix, avoiding the formation of bundles due to van der Waals interactions existing between the nanotubes. In this work composites of polystyrene at various percentages of SWNT were fabricated using Latex Technology technique, a polymer type-independent method based on using a surfactant as a dispersing agent. An electrical characterization of SWNT composites was performed both in DC and AC modes. From the analysis of DC data a percolative behavior was found for the conductivity as function of SWNT content. The innovative contribution of this work consists in the modeling of the composite material upon its electrical properties. AC measurements and the analysis of impedance as function of angular frequency lead to the formulation of an equivalent circuit able to model the composite material in correspondence of the percolative threshold.  相似文献   

8.
An effective and facile in situ reduction approach for the fabrication of carbon nanotube-supported Au nanoparticle (CNT/Au NP) composite nanomaterials is demonstrated in this article. Linear polyethyleneimine (PEI) is ingeniously used as both a functionalizing agent for the multiwalled carbon nanotubes (MWNTs) and a reducing agent for the formation of Au NPs. This method involves a simple mixing process followed by a mild heating process. This approach does not need the exhaustive surface oxidation process of CNTs. The coverage of Au NPs on CNTs is tunable by varying the experimental parameters, such as the initial molar ratio of PEI to HAuCl4, the relative concentration of PEI and HAuCl4 to MWNTs, and the temperature and duration of the heat treatment. More importantly, even the heterogeneous CNT/Au composite nanowires are obtainable through this method. TEM, XPS, and XRD are all used to characterize the CNT/Au composite materials. In addition, the optical and electrocatalytic properties are investigated.  相似文献   

9.
The electrochemical response of a glassy carbon electrode modified with carbon nanotubes (CNT) dispersed in two solvents, water and DMF, and two polymers, chitosan and Nafion is reported. The films were homogeneous when the dispersing agent was water or DMF. In the case of polymers, the surfaces present areas with different density of CNTs. A more sensitive electrochemical response was obtained when CNTs are dispersed in the solvents. In the case of CNT dispersed with polymers, the nature of the polymer demonstrated to be a critical parameter not only for dispersing the nanotubes but also for the electrochemical activity of the resulting electrodes.  相似文献   

10.
Zirconium oxide is a ceramic material widely studied due to its mechanical and electrical properties that can be improved with the use of carbon nanotubes (CNTs) as reinforcement. The synthesis of CNT/zirconia composites by sol–gel method is still very scarce, due to the hydrophobic nature of the CNTs, being their dispersion in aqueous medium an intrinsic difficulty to the synthesis. In this work, we present a sol–gel synthesis for MWCNTs/zirconia composites, where two kinds of surfactants, sodium and ammonium stearates dissolved in water (1 g/100 mL), were used as dispersant agents for multiwall carbon nanotubes (MWCNTs). They are cheap and easy to prepare, and were very effective in dispersing the MWCNTs. Different quantities of MWCNTs (up to 5 wt%) were added in the solution of stearate/water and this solution with the highly dispersed MWCNTs was added to the zirconia sol–gel, producing composites of MWCNTs/zirconia with different concentrations of MWCNTs. All the powders were heat treated at 300 and 500 °C and the powder characterization was performed by transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and infrared spectroscopy (FTIR). The composite MWCNTs/zirconia remained amorphous at 300 °C and presented a tetragonal phase at 500 °C with an average grain size of about 20 ± 3 nm, determined by the Scherrer equation from the XRD patterns. For these crystalline samples, TEM images suggest a more effective interaction between MWCNTs with ZrO2 matrix, where it can be observed that the carbon nanotubes are fully coated by the matrix.  相似文献   

11.
Since the discovery of carbon nanotubes (CNTs) and intrinsically conductive polymers, such as polyaniline (PANI) some research has focused on the development of novel hybrid materials by combining CNT and PANI to achieve their complementary properties. Electrically conductive elastomer nano‐composites containing CNT and PANI are described in the present investigation. The synthesis procedure includes in‐situ inverse emulsion polymerization of aniline doped with dodecylbenzene sulfonic acid in the presence of CNT and dissolved styrene‐isoprene‐styrene (SIS) block copolymer, followed by a precipitation–filtration step. The synthesis step is carried out under ultrasonication. The resulting uniform SIS/CNT/PANI dispersions are stable for long time durations. The incorporation of CNT/PANI in the SIS elastomeric matrix improves thermal, mechanical and electrical properties of the nano‐composites. The formation of continuous three‐dimensional CNT/PANI network, assumed to be responsible for enhancement of the resulting nano‐composite properties, is observed by HRSEM. A relatively low percolation threshold of 0.4 wt.% CNT was determined. The Young's modulus of the SIS/CNT/PANI significantly increases in the presence of CNT. High electrical conductivity levels were obtained in the ternary component systems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
A carbon nanotube/poly(ethyl 2-cyanoacrylate) (CNT/PECA) composite electrode was developed for enhanced amperometric detection. The composite electrode was fabricated on the basis of water-vapor-initiated polymerization of a mixture of CNTs and ethyl 2-cyanoacrylate in the bore of a piece of fused silica capillary. The morphology and structure of the composite were investigated by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and thermogravimetric analysis. The results indicate that the CNTs were well dispersed and embedded throughout the PECA matrix to form an interconnected CNT network. The analytical performance of this unique CNT-based detector has been demonstrated by separating and detecting six flavones in combination with capillary electrophoresis. The advantages of the CNT/PECA composite detector include lower operating potential, higher sensitivity, low expense of fabrication, satisfactory resistance to surface fouling, and enhanced stability; these properties indicate great promise for a wide range of applications.  相似文献   

13.
陈姬亮  张贻川 《化学通报》2020,83(2):179-182
本文首先通过溶液混合法将碳纳米管(CNTs)分散到聚碳酸酯(PC)基体中,然后将获得的PC/CNT絮状物通过高温模压的方法制备了一种柔性的高热电性能PC/CNT复合材料。PC/CNT复合材料断面形貌分析表明,CNTs均匀地分散在PC基体中。此外,PC/CNT复合材料的导电性随着CNTs含量的增加而急剧增加,而Seebeck系数几乎保持恒定,使得材料的功率因子随着CNTs含量的增加而快速增加,最大功率因子达到4.6μW·m-1·K-2。  相似文献   

14.
Polymer blend nanocomposites based on thermoplastic polyurethane (PU) elastomer, polylactide (PLA) and surface modified carbon nanotubes were prepared via simple melt mixing process and investigated for its mechanical, dynamic mechanical and electroactive shape memory properties. Chemical and structural characterization of the polymer blend nanocomposites were investigated by Fourier Transform infrared (FT-IR) and wide angle X-ray diffraction (WAXD). Loading of the surface modified carbon nanotube in the PU/PLA polymer blends resulted in the significant improvement on the mechanical properties such as tensile strength, when compared to the pure and pristine CNT loaded polymer blends. Dynamic mechanical analysis showed that the glass transition temperature (Tg) of the PU/PLA blend slightly increases on loading of pristine CNT and this effect is more pronounced on loading surface modified CNTs. Thermal and electrical properties of the polymer blend composites increases significantly on loading pristine or surface modified CNTs. Finally, shape memory studies of the PU/PLA/modified CNT composites exhibit a remarkable recoverability of its shape at lower applied dc voltages, when compared to pure or pristine CNT loaded system.  相似文献   

15.
Two kinds of hybrids based on diallyl bisphenol A modified bismaleimide (BMI‐BA) and carbon nanotubes (CNTs) or aminated carbon nanotubes (A‐CNTs) were prepared, their static and dynamic mechanical properties were investigated in detail by using impact and flexural measurements as well as dynamic mechanical analysis (DMA). Results show that these mechanical properties of hybrids greatly depended on the nature (or the functional groups on CNTs) and loading in BMI‐BA matrix of hybrids. For example, the BMI‐BA/A‐CNT hybrid with a desirable amount of A‐CNTs has a higher impact strength than the original BMI‐BA resin, while all BMI‐BA/CNT hybrids have lower impact strength than the original BMI‐BA resin. DMA test shows that all hybrids have somewhat lower storage modulus and glass transition temperature than a pure polymer, which maybe attributed to the fact that both CNTs and A‐CNTs shift the curing peak to a higher temperature range and thus decrease the crosslinking density of networks. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Electrical resistance (ER) and thermogram measurements were used to evaluate thermal transfer, interfacial and mechanical properties of carbon fiber reinforced thermoplastic polycarbonate composites. Carbon nanotubes (CNTs) were fairly uniformly dispersed in polycarbonates using a solvent dispersion method. The CNTs were then further dispersed with an additional time using a twin screw extruder. The effect of CNT on the mechanical properties of polycarbonate was evaluated using a thin film tensile test. For thermogram to evaluate the transferring temperature the composite was placed on a hotplate and copper wires were inserted in the composite at uniform thickness intervals. Due to the different inherent thermal conductivity of CNT, ER was measured to detect thermal changes in the carbon fiber/CNT-polycarbonate composites. The comparison of interlaminar shear strength (ILSS) was to investigate effects of CNT on mechanical and interfacial properties. The uniform distribution of CNTs affected all of these properties in carbon fiber-reinforced thermoplastic composite. Furthermore, heat transfer and heat release become more rapid with the addition of CNT than the without case.  相似文献   

17.
Medium molecular weight poly(L ,L ‐lactide)s (PLA) containing at one chain end ionic group derived from imidazolium ionic liquid (IL) were synthesized by cationic polymerization using hydroxylated IL as initiator. matrix assisted laser desorption/ionization time‐of‐flight analysis confirmed the structure of products (PLA‐IL). Carbon nanotubes (CNT) were dispersed in solution of PLA‐IL in 1,4‐dioxane and significant improvement of stability of suspension was observed by measurements of suspension absorbance. Similar effect was, however, observed also for solutions of PLA which did not contain terminal IL group. CNT samples treated with PLA‐IL and PLA were isolated, thoroughly washed with 1,4‐dioxane and stability of suspensions was again measured. Sample treated with PLA after washing behave similarly to untreated CNT. Stability of suspension of CNT treated with PLA‐IL after washing was considerably higher than that of untreated CNT and the presence of polymer bound to CNT was clearly detectable in scanning electron microscopy images. Results indicate that there is indeed an interaction between end‐group derived from IL and CNT surface as postulated earlier but to observe solely this effect an excess of polymer should be removed, otherwise factors such as increase of viscosity of solution or weak interactions of PLA ester groups with CNT may obscure results. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
Carbon nanotubes (CNTs) have long been recognized as the stiffest and strongest man-made material known to date.In addition,their high electrical conductivity has roused interest in the areas of electrical appliances and communication related applications.However,due to their miniature size,the excellent properties of these nanostructures can only be exploited if they are homogeneously embedded into light-weight matrices as those offered by a whole series of engineering polymers.In order to enhance their chemical affinity to engineering polymer matrices,chemical modification of the graphitic sidewalls and tips is necessary.The mechanical and electrical properties to date of a whole range of nanocomposites of various carbon nanotube contents are also reviewed in this attempt to facilitate progress in this emerging area.Recently,carbonaceous nano-fillers such as graphene and carbon nanotubes (CNTs) play a promising role due to their better structural and functional properties and broad range of applications in every field.Since CNTs usually form stabilized bundles due to van der Waals interactions,they are extremely difficult to disperse and align in a polymer matrix.The biggest issues in the preparation of CNTs reinforced composites reside in efficient dispersion of CNTs into a polymer matrix,the assessment of the dispersion,and the alignment and control of the CNTs in the matrix.An overview of various CNT functionalization methods is given.In particular,CNT functionalization using click chemistry and the preparation of CNT composites employing hyperbranched polymers are stressed as potential techniques to achieve good CNT dispersion.In addition,discussions on mechanical,thermal,electrical,electrochemical and applications ofpolymer/CNT composites are also included.  相似文献   

19.
By using the advantages of carbon nanotubes (CNTs), such as their excellent mechanical properties and low density, CNT-reinforced metal matrix composites (MMCs) are expected to overcome the limitations of conventional metal materials, i.e., their high density and low ductility. To understand the behavior of composite materials, it is necessary to observe the behavior at the molecular level and to understand the effect of various factors, such as the radius and content of CNTs. Therefore, in this study, the effect of the CNT radius and content on the mechanical properties of CNT-Al composites was observed using a series of molecular dynamics simulations, particularly focusing on MMCs with a high CNT content and large CNT diameter. The mechanical properties, such as the strength and stiffness, were increased with an increasing CNT radius. As the CNT content increased, the strength and stiffness increased; however, the fracture strain was not affected. The behavior of double-walled carbon nanotubes (DWNTs) and single-walled carbon nanotubes (SWNTs) was compared through the decomposition of the stress–strain curve and observations of the atomic stress field. The fracture strain increased significantly for SWNT-Al as the tensile force was applied in the axial direction of the armchair CNTs. In the case of DWNTs, an early failure was initiated at the inner CNTs. In addition, the change in the elastic modulus according to the CNT content was predicted using the modified rule of mixture. This study is expected to be useful for the design and development of high-performance MMCs reinforced by CNTs.  相似文献   

20.
Ultrahigh molecular mass polyethylene (UHMMPE) is filled with carbon nano-tubes (CNTs) by solution in the presence of maleic anhydride grafted styrene-(ethylene-co-butylene)-styrene copolymer (MA-SEBS) as a compatibilizer. The UHMMPE/CNT composites crystallized from melt were prepared at a cooling rate of 20°C min-1. The melting and crystallization behaviors of UHMMPE/ CNT composites were investigated by differential scanning calorimetry. The results showed that onset melting temperature (T m) and degree of crystallinity (X c) of UHMMPE/CNT composites crystallized from solution are higher than those from melt due to the larger crystalline lamellar thickness. The onset crystallization temperature (T c) of UHMMPE/CNT composites tends to shift to higher temperature region with increasing CNT content in the composites. Tm and Tc of UHMMPE phase in UHMMPE/CNT composites decrease with the addition of MA-SEBS. Moreover, the crystallization rate of UHMMPE phase in UHMMPE/CNT composite is increased due to the introduction of CNTs. MA-SEBS acts as compatilizer, enhances the dispersion of CNTs in the UHMMPE matrix. Thereby, the crystallization rate of UHMMPE phase in UHMMPE/CNT composite is further increased with the addition of MA-SEBS. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号