首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The graphene‐based nanocomposites are considered as great candidates for enhancing electrical and mechanical properties of nonconductive scaffolds in cardiac tissue engineering. In this study, reduced graphene oxide‐silver (rGO‐Ag) nanocomposites (1 and 2 wt%) were synthesized and incorporated into polyurethane (PU) nanofibers via electrospinning technique. Next, the human cardiac progenitor cells (hCPCs) were seed on these scaffolds for in vitro studies. The rGO‐Ag nanocomposites were studied by X‐ray diffraction (XRD), Raman spectroscopy, and transmission electron microscope (TEM). After incorporation of rGO‐Ag into PU nanofibers, the related characterizations were carried out including scanning electron microscope (SEM), TEM, water contact angle, and mechanical properties. Furthermore, PU and PU/nanocomposites scaffolds were used for in vitro studies, wherein hCPCs showed good cytocompatibility via 3‐(4, 5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide (MTT) assay and considerable attachment on the scaffold using SEM studies. Real‐time polymerase chain reaction (PCR) and immunostaining studies confirmed the upregulation of cardiac specific genes including GATA‐4, T‐box 18 (TBX 18), cardiac troponin T (cTnT), and alpha‐myosin heavy chain (α‐MHC) in the PU/rGO‐Ag scaffolds in comparison with neat PU ones. Therefore, these nanofibrous rGO‐Ag–reinforced PU scaffolds can be considered as suitable candidates in cardiac tissue engineering.  相似文献   

2.
《Electroanalysis》2018,30(5):810-818
The development of flexible electrodes is of considerable current interest because of the increasing demand for modern electronics, portable medical products, and compact devices. We report a new type of flexible electrochemical sensor fabricated by integrating graphene and MoS2 nanosheets. A highly flexible and free‐standing conductive MoS2 nanosheets/reduced graphene oxide (MoS2/rGO) paper was prepared by a two‐step process: vacuum filtration and chemical reduction treatment. The MoS2/graphene oxide (MoS2/GO) paper obtained by a simple filtration method was transformed into MoS2/rGO paper after a chemical reduction process. The obtained MoS2/rGO paper was characterized by scanning electron microscopy, X‐ray diffraction spectroscopy, X‐ray photoelectron spectroscopy, Raman spectroscopy, electrochemical impedance spectroscopy. The electrochemical behavior of folic acid (FA) on MoS2/rGO paper electrode was investigated by cyclic voltammetry and amperometry. Electrochemical experiments indicated that flexible MoS2/rGO composite paper electrode exhibited excellent electrocatalytic activity toward the FA, which can be attributed to excellent electrical conductivity and high specific surface area of the MoS2/rGO paper. The resulting biosensor showed highly sensitive amperometric response to FA with a wide linear range.  相似文献   

3.
One of challenges existing in fiber‐based supercapacitors is how to achieve high energy density without compromising their rate stability. Owing to their unique physical, electronic, and electrochemical properties, two‐dimensional (2D) nanomaterials, e.g., molybdenum disulfide (MoS2) and graphene, have attracted increasing research interest and been utilized as electrode materials in energy‐related applications. Herein, by incorporating MoS2 and reduced graphene oxide (rGO) nanosheets into a well‐aligned multi‐walled carbon nanotube (MWCNT) sheet followed by twisting, MoS2‐rGO/MWCNT and rGO/MWCNT fibers are fabricated, which can be used as the anode and cathode, respectively, for solid‐state, flexible, asymmetric supercapacitors. This fiber‐based asymmetric supercapacitor can operate in a wide potential window of 1.4 V with high Coulombic efficiency, good rate and cycling stability, and improved energy density.  相似文献   

4.
《Electroanalysis》2017,29(11):2565-2571
MoS2 nanoflakes were prepared by exfoliating commercial MoS2 powders with the assistance of ultrasound and graphene foam was synthesized by chemical vapor deposition using nickel foam as the template. MoS2‐graphene hybrid nanosheets were developed through the combination of MoS2 nanoflakes and graphene nanosheets by ultrasonic dispersion. The hybrid nanosheets were sprayed onto the ITO coated glass, which acts as an electrode for the simultaneously electrochemical determination of levodopa and uric acid. The MoS2‐graphene hybrid nanosheets were characterized by scanning electron microscopy, X‐ray diffraction and Raman spectroscopy. The results show that the hybrid nanosheets are composed of MoS2 and graphene with a sheet‐like morphology. The sensitivity of the electrode for levodopa and uric acid is 0.36 μA μM−1 and 0.39 μA μM−1, respectively. The electrode also shows low limit of detection, good selectivity, reproducibility and stability. And it is potential for use in clinical research.  相似文献   

5.
One of challenges existing in fiber‐based supercapacitors is how to achieve high energy density without compromising their rate stability. Owing to their unique physical, electronic, and electrochemical properties, two‐dimensional (2D) nanomaterials, e.g., molybdenum disulfide (MoS2) and graphene, have attracted increasing research interest and been utilized as electrode materials in energy‐related applications. Herein, by incorporating MoS2 and reduced graphene oxide (rGO) nanosheets into a well‐aligned multi‐walled carbon nanotube (MWCNT) sheet followed by twisting, MoS2‐rGO/MWCNT and rGO/MWCNT fibers are fabricated, which can be used as the anode and cathode, respectively, for solid‐state, flexible, asymmetric supercapacitors. This fiber‐based asymmetric supercapacitor can operate in a wide potential window of 1.4 V with high Coulombic efficiency, good rate and cycling stability, and improved energy density.  相似文献   

6.
In the present work, a facile and environmental method was developed to fabricate the novel functionalized MoS2 hybrid. Firstly, MoS2 nanosheets were coated with polydopamine (PDA) through the self‐polymerization of dopamine (MoS2‐PDA) in a buffer solution. Then the decoration of Ni(OH)2 on the MoS2‐PDA was synthesized because of the strong affinity of Ni2+ with hydroxyl groups in PDA. Finally, the as‐synthesized MoS2‐PDA@Ni(OH)2 was introduced into poly(lactic acid) (PLA) matrix to explore flame retardancy, thermal stability, and crystalline property of the composites. As confirmed by X‐ray diffraction (XRD), Fourier‐transform infrared spectrometer (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA), the MoS2 nanosheets were dually modified with PDA and Ni(OH)2 without destroying the original structures. The thermal degradation of PLA with MoS2‐PDA@Ni(OH)2 generated a notably higher yield of char. Moreover, the crystallization rate of composites is higher than neat PLA. The cone calorimeter test revealed that the introduction of 3% MoS2‐PDA@Ni(OH)2 resulted in lower Peak Heat Release Rate (PHRR) (decreased by 21.7%). Thus, the research provided an innovative functionalization method for manufacturing PLA composites with high performances.  相似文献   

7.
Weak van der Waals interactions between interlayers of two‐dimensional layered materials result in disabled across‐interlayer electron transfer and poor layered structural stability, seriously deteriorating their performance in energy applications. Herein, we propose a novel covalent assembly strategy for MoS2 nanosheets to realize unique MoS2/SnS hollow superassemblies (HSs) by using SnS nanodots as covalent linkages. The covalent assembly based on all‐inorganic and carbon‐free concept enables effective across‐interlayer electron transfer, facilitated ion diffusion kinetics, and outstanding mechanical stability, which are evidenced by experimental characterization, DFT calculations, and mechanical simulations. Consequently, the MoS2/SnS HSs exhibit superb rate performance and long cycling stability in lithium‐ion batteries, representing the best comprehensive performance in carbon‐free MoS2‐based anodes to date. Moreover, the MoS2/SnS HSs also show excellent sodium storage performance in sodium‐ion batteries.  相似文献   

8.
Ultrathin MoS2nanosheets were prepared in high yield using a facile and effective hydrothermal intercalation and exfoliation route. The products were characterized in detail using X-ray diffraction, scanning electron microscopy, transmission electron microscopy and Raman spectroscopy. The results show that the high yield of MoS2nanosheets with good quality was successfully achieved and the dimensions of the immense nanosheets reached 1 μm–2 μm. As anode material for Li-ion batteries, the as-prepared MoS2nanosheets electrodes exhibited a good initial capacity of 1190 mAh g-1and excellent cyclic stability at constant current density of 50 mA g-1. After 50 cycles, it still delivered reversibly sustained high capacities of 750 mAh g-1.  相似文献   

9.
High‐resolution scanning electrochemical cell microscopy (SECCM) is used to image and quantitatively analyze the hydrogen evolution reaction (HER) catalytically active sites of 1H‐MoS2 nanosheets, MoS2, and WS2 heteronanosheets. Using a 20 nm radius nanopipette and hopping mode scanning, the resolution of SECCM was beyond the optical microscopy limit and visualized a small triangular MoS2 nanosheet with a side length of ca. 130 nm. The electrochemical cell provides local cyclic voltammograms with a nanoscale spatial resolution for visualizing HER active sites as electrochemical images. The HER activity difference of edge, terrace, and heterojunction of MoS2 and WS2 were revealed. The SECCM imaging directly visualized the relationship of HER activity and number of MoS2 nanosheet layers and unveiled the heterogeneous aging state of MoS2 nanosheets. SECCM can be used for improving local HER activities by producing sulfur vacancies using electrochemical reaction at the selected region.  相似文献   

10.
The metallic 1T‐MoS2 has attracted considerable attention as an effective catalyst for hydrogen evolution reactions (HERs). However, the fundamental mechanism about the catalytic activity of 1T‐MoS2 and the associated phase evolution remain elusive and controversial. Herein, we prepared the most stable 1T‐MoS2 by hydrothermal exfoliation of MoS2 nanosheets vertically rooted into rigid one‐dimensional TiO2 nanofibers. The 1T‐MoS2 can keep highly stable over one year, presenting an ideal model system for investigating the HER catalytic activities as a function of the phase evolution. Both experimental studies and theoretical calculations suggest that 1T phase can be irreversibly transformed into a more active 1T′ phase as true active sites in photocatalytic HERs, resulting in a “catalytic site self‐optimization”. Hydrogen atom adsorption is the major driving force for this phase transition.  相似文献   

11.
以碳纳米纤维(CNFs)作为负载基体和反应器采用静电纺丝技术和碳化工艺生长和调控二硫化钼(MoS_2)纳米片。通过改变前驱体溶液浓度来调控纳米片的形貌和结构,利用MoS_2纳米片的高催化活性和CNFs高比表面积、良好的稳定性以及高电导率的协同作用,研究不同形貌和结构的杂化纳米材料在电催化析氢方面的应用,探索杂化材料形貌与性能之间的潜在规律。运用多种分析测试技术对制备得到的纳米杂化材料进行表征,并对所制备的MoS_2/CNFs杂化材料的电催化析氢性能(HER)进行研究,研究表明近似皮芯结构的MoS_2/CNFs-10杂化材料的电催化析氢性能最好,初始析氢过电位在220 mV,Tafel斜率为110m V·dec~(-1)。  相似文献   

12.
以碳纳米纤维(CNFs)作为负载基体和反应器采用静电纺丝技术和碳化工艺生长和调控二硫化钼(MoS2)纳米片。通过改变前驱体溶液浓度来调控纳米片的形貌和结构,利用MoS2纳米片的高催化活性和CNFs高比表面积、良好的稳定性以及高电导率的协同作用,研究不同形貌和结构的杂化纳米材料在电催化析氢方面的应用,探索杂化材料形貌与性能之间的潜在规律。运用多种分析测试技术对制备得到的纳米杂化材料进行表征,并对所制备的MoS2/CNFs杂化材料的电催化析氢性能(HER)进行研究,研究表明近似皮芯结构的MoS2/CNFs-10杂化材料的电催化析氢性能最好,初始析氢过电位在220 mV,Tafel斜率为110 mV·dec-1。  相似文献   

13.
采用机械球磨法成功制备Ag3PO4/MoS2纳米片复合催化剂。运用X射线衍射仪(XRD)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)、紫外可见漫反射光谱(UV-Vis)和荧光发射光谱(PL)对复合催化剂的结构和形貌进行了表征。结果表明,Ag3PO4纳米粒子均匀地附着在MoS2纳米片层结构上,两者形成紧密结合。以亚甲基蓝为模拟污染物,研究复合催化剂在可见光照射下的光催化特性;通过循环实验考察复合催化剂的稳定性。结果显示,含有1%的MoS2纳米片与Ag3PO4形成的复合催化剂在30 min内对亚甲基蓝的降解率为95%,其降解动力学常数是纯相Ag3PO4的2倍。经过5次循环实验后复合催化剂对于亚甲基蓝的降解率为84%,而纯Ag3PO4对于亚甲基蓝的降解率仅为35%。Ag3PO4/MoS2纳米片复合催化剂具有优良的光催化活性和高稳定性,主要归因于二硫化钼纳米片与磷酸银形成异质结,磷酸银激发的电子和二硫化钼纳米片产生的空穴直接复合,从而促使光生电子从磷酸银晶体表面快速分离,减轻了磷酸银的光电子腐蚀,同时也提高了复合物的光催化活性。  相似文献   

14.
采用机械球磨法成功制备Ag_3PO_4/MoS_2纳米片复合催化剂。运用X射线衍射仪(XRD)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)、紫外可见漫反射光谱(UV-Vis)和荧光发射光谱(PL)对复合催化剂的结构和形貌进行了表征。结果表明,Ag_3PO_4纳米粒子均匀地附着在MoS_2纳米片层结构上,两者形成紧密结合。以亚甲基蓝为模拟污染物,研究复合催化剂在可见光照射下的光催化特性;通过循环实验考察复合催化剂的稳定性。结果显示,含有1%的MoS_2纳米片与Ag_3PO_4形成的复合催化剂在30 min内对亚甲基蓝的降解率为95%,其降解动力学常数是纯相Ag_3PO_4的2倍。经过5次循环实验后复合催化剂对于亚甲基蓝的降解率为84%,而纯Ag_3PO_4对于亚甲基蓝的降解率仅为35%。Ag_3PO_4/MoS_2纳米片复合催化剂具有优良的光催化活性和高稳定性,主要归因于二硫化钼纳米片与磷酸银形成异质结,磷酸银激发的电子和二硫化钼纳米片产生的空穴直接复合,从而促使光生电子从磷酸银晶体表面快速分离,减轻了磷酸银的光电子腐蚀,同时也提高了复合物的光催化活性。  相似文献   

15.
One‐dimensional nanofibers have attracted tremendous attention because of their potential applications. Electrospinning technology enables industrial production of these nanofibers. This study aims to fabricate one‐dimensional ZnO doped TiO2 by electrospinning and to characterize these hybrid nanofibers. The nanocomposite was prepared using colloidal gel composed of zinc nitrate, titanium isopropoxide and polyvinyl acetate. X‐ray diffraction, energy dispersive x‐ray analysis and transmission electron microscopy analysis confirmed the purity and crystalline nature of this material, whereas the diameter of these nanofibres estimated from scanning electron microscope (SEM), field emission SEM and transmission electron microscopy are between 200 and 300 nm. Cell counting with Kit‐8 assay at regular time intervals and phase‐contrast microscopy data revealed that C2C12 cells proliferated well on ZnO/TiO2 nanofibers between 1 and 10 µg/ml, and cellular attachments are visible by SEM. The nanostructured ZnO/TiO2 hybrid nanofibers show higher cell adhesion, proliferation and spreading behavior compared with the titanium substrate and control. Our study suggests that ZnO/TiO2 nanofibers could potentially be used in tissue engineering applications. The scalability, low cost, reproducibility and high‐throughput capability of this technology is potentially beneficial to examine and optimizing a wide array of cell‐nanofiber systems prior to in vivo experiments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
A highly active hierarchical MoS2/ZnIn2S4 composite catalyst was synthesized in situ by using a facile controlled‐growth approach through a solvothermal process. During the solvothermal reaction, 2D ultrathin curled ZnIn2S4 nanosheets grew on the surface of MoS2 slices, which could help to form a more‐homogeneous mixture, effective interfacial contact, and strong interactions between the ZnIn2S4 nanosheets and the MoS2 slices. The intimate contact between ZnIn2S4 and MoS2 favored the formation of junctions between the two components, thereby improving the charge separation and prolonging the mean lifetime of the electron–hole pairs. Moreover, growing ZnIn2S4 nanosheets by visible‐light catalysis on MoS2 slices afforded a higher number of available catalytically active sites. So, the photocatalytic hydrogen‐evolution performance of the hierarchical MoS2/ZnIn2S4 composite was significantly enhanced, owing to a synergistic effect of these factors. This work could provide new insights into the fabrication of a highly efficient and low‐cost non‐noble‐metal co‐catalyst for visible‐light H2 generation.  相似文献   

17.
Molybdenum disulfide (MoS2) has excellent trapping ability for lead ions whereas its micro-/nanoscale size has greatly impeded its practical applications in the flow-through systems. Herein, a millimeter-sized nanocomposite MoS2?001 was synthesized for Pb2+ removal by loading MoS2 nanosheets into a polystyrene cation exchanger D-001 by a facile hydrothermal method. The proposed structure and adsorption mechanism of MoS2?001 was confirmed by the scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analysis. The nanocomposite showed outstanding adsorption capacity and rapid adsorption kinetic for Pb2+ removal, and the adsorption behavior followed the Langmuir adsorption model and pseudo-first-model kinetic model. Pb2+ uptake by MoS2?001 still maintains a high level even in the presence of extremely highly competitive ions (Ca(II) and Mg(II)), suggesting its high selectivity for Pb2+ adsorption. Besides, the fixed-bed column experiments further certified that MoS2?001 is of great potential for Pb2+ removal from the wastewater in practical engineering applications. Even more gratifying is that the exhausted MoS2?001 can be regenerated by NaCl-EDTANa2 solution without any significant adsorption capacity loss. Consequently, all the results indicated that MoS2?001 is a promising candidate adsorbent for lead-containing wastewater treatment.  相似文献   

18.
The development of tissue engineering scaffolds is of great significance for the repair and regeneration of damaged tissues and organs. Silk fibroin (SF) is a natural protein polymer with good biocompatibility, biodegradability, excellent physical and mechanical properties and processability, making it an ideal universal tissue engineering scaffold material. Nanofibers prepared by electrospinning have attracted extensive attention in the field of tissue engineering due to their excellent mechanical properties, high specific surface area, and similar morphology as to extracellular matrix (ECM). The combination of silk fibroin and electrospinning is a promising strategy for the preparation of tissue engineering scaffolds. In this review, the research progress of electrospun silk fibroin nanofibers in the regeneration of skin, vascular, bone, neural, tendons, cardiac, periodontal, ocular and other tissues is discussed in detail.  相似文献   

19.
《化学:亚洲杂志》2017,12(22):2889-2893
Bulk molybdenum disulfide (MoS2) itself is virtually insoluble in common organic solvents because of the tight stacks of multiple MoS2 nanosheets. Here we report that V‐shaped polyaromatic compounds with non‐ionic side chains can efficiently exfoliate and disperse the inorganic nanosheets. Simple grinding and sonication (less than total 1 h) of MoS2 powder with the V‐shaped compounds gave rise to large MoS2 nanosheets highly dispersed in NMP through efficient host‐guest S–π interactions. DLS and AFM analyses revealed that the lateral sizes (ca. 150–270 nm) and thicknesses (ca. 2–8 nm) of the products depend on the identity of the non‐ionic side chains on the V‐shaped dispersant.  相似文献   

20.
An efficient and universal method to directly hybridize isocharged nanosheets of layered metal oxide and reduced graphene oxide (rGO) is developed on the basis of the surface modification and an electrostatically driven assembly process. On the basis of this synthetic method, the CoO2–rGO nanocomposite can be synthesized with exfoliated CoO2 and rGO nanosheets, and transformed into CoO–CoO2–rGO nanocomposites with excellent electrode performance for lithium‐ion batteries. Also, this surface‐modification assembly route is successfully applied for the synthesis of another mesoporous TiO2–rGO nanocomposite. This result provides clear evidence for the usefulness of the present method as a universal way of hybridizing isocharged anionic nanosheets of inorganic solids and graphene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号