首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Molecular stress function theory with new strain energy function is used to analyze transient extensional viscosity data of seven low-density polyethylene (LDPE) melts with various molecular structures as published by Stadler et al. (Rheol Acta 48:479–490, 2009) Pivokonsky et al. (J Non Newton Fluid Mech 135:58–67, 2006) and Wagner et al. (J Rheol 47(3):779–793, 2003). The new strain energy function has three nonlinear viscoelastic material parameters and assumes that the total stored energy of a branched molecule is given by different backbone and side chains stretching. The model parameters have been fitted for each LDPE in order to correlate with the supposed macromolecular structure expected from the type of synthesis. Most probable molecular structures for these LDPEs are comb and Cayley tree structures for respectively low- and high-molecular weight parts.  相似文献   

2.
Recently, the tube diameter relaxation time in the evolution equation of the molecular stress function (MSF) model (Wagner et al., J Rheol 49: 1317–1327, 2005) with the interchain pressure effect (Marrucci and Ianniruberto, Macromolecules 37:3934–3942, 2004) included was shown to be equal to three times the Rouse time in the limit of small chain stretch. From this result, an advanced version of the MSF model was proposed, allowing modeling of the transient and steady-state elongational viscosity data of monodisperse polystyrene melts without using any nonlinear parameter, i.e., solely based on the linear viscoelastic characterization of the melts (Wagner and Rolón-Garrido 2009a, b). In this work, the same approach is extended to model experimental data in shear flow. The shear viscosity of two polybutadiene solutions (Ravindranath and Wang, J Rheol 52(3):681–695, 2008), of four styrene-butadiene random copolymer melts (Boukany et al., J Rheol 53(3):617–629, 2009), and of four polyisoprene melts (Auhl et al., J Rheol 52(3):801–835, 2008) as well as the shear viscosity and the first and second normal stress differences of a polystyrene melt (Schweizer et al., J Rheol 48(6):1345–1363, 2004), are analyzed. The capability of the MSF model with the interchain pressure effect included in the evolution equation of the chain stretch to model shear rheology on the basis of linear viscoelastic data alone is confirmed.  相似文献   

3.
External heat transfer prediction is performed in two-dimensional turbine blade cascades using the Reynolds-averaged Navier–Stokes equations. For this purpose, six different turbulence models including the algebraic Baldwin–Lomax (AIAA paper 78-257, 1978), three low-Re k−ɛ models (Chien in AIAA J 20:33–38, 1982; Launder and Sharma in Lett Heat Mass Transf 1(2):131–138, 1974; Biswas and Fukuyama in J Turbomach 116:765–773, 1994), and two k−ω models (Wilcox in AIAA J 32(2):247–255, 1994) are taken into account. The computer code developed employs a finite volume method to solve governing equations based on an explicit time marching approach with capability to simulate subsonic, transonic and supersonic flows. The Roe method is used to decompose the inviscid fluxes and the gradient theorem to decompose viscous fluxes. The performance of different turbulence models in prediction of heat transfer is examined. To do so, the effect of Reynolds and Mach numbers along with the turbulent intensity are taken into account, and the numerical results obtained are compared with the experimental data available.  相似文献   

4.
The theory of thin wires developed in Dret and Meunier (Comptes Rendus de l’Académie des Sciences. Série I. Mathématique 337:143–147, 2003) is adapted to phase-transforming materials with large elastic moduli in the sense discussed in James and Rizzoni (J Elast 59:399–436, 2000). The result is a one-dimensional constitutive model for shape memory wires, characterized by a small number of material constants. The model is used to analyze self-accommodated and detwinned microstructures and to study superelasticity. It also turns out that the model successfully reproduces the behavior of shape memory wires in experiments of restrained recovery (Tsoi et al. in Mater Sci Eng A 368:299–310, 2004; Tsoi in 50:3535–3544, 2002; S̆ittner et al. in Mater Sci Eng A 286:298–311, 2000; vokoun in Smart Mater Struct 12:680–685, 2003; Zheng and Cui in Intermetallics 12:1305–1309, 2004; Zheng et al. in J Mater Sci Technol 20(4):390–394, 2004). In particular, the model is able to predict the shift to higher transformation temperatures on heating. The model also captures the effect of prestraining on the evolution of the recovery stress and of the martensite volume fraction.  相似文献   

5.
This work studies the response of bodies governed by dipolar gradient elasticity to concentrated loads. Two-dimensional configurations in the form of either a half-space (Flamant–Boussinesq type problem) or a full-space (Kelvin type problem) are treated and the concentrated loads are taken as line forces. Our main concern is to determine possible deviations from the predictions of plane-strain/plane-stress classical linear elastostatics when a more refined theory is employed to attack the problems. Of special importance is the behavior of the new solutions near to the point of application of the loads where pathological singularities and discontinuities exist in the classical solutions. The use of the theory of gradient elasticity is intended here to model material microstructure and incorporate size effects into stress analysis in a manner that the classical theory cannot afford. A simple but yet rigorous version of the generalized elasticity theories of Toupin (Arch. Ration. Mech. Anal. 11:385–414, 1962) and Mindlin (Arch. Ration. Mech. Anal. 16:51–78, 1964) is employed that involves an isotropic linear response and only one material constant (the so-called gradient coefficient) additional to the standard Lamé constants (Georgiadis et al., J. Elast. 74:17–45, 2004). This theory, which can be viewed as a first-step extension of the classical elasticity theory, assumes a strain-energy density function, which besides its dependence upon the standard strain terms, depends also on strain gradients. The solution method is based on integral transforms and is exact. The present results show departure from the ones of the classical elasticity solutions (Flamant–Boussinesq and Kelvin plane-strain solutions). Indeed, continuous and bounded displacements are predicted at the points of application of the loads. Such a behavior of the displacement fields is, of course, more natural than the singular behavior present in the classical solutions.   相似文献   

6.
Large polymer filaments can form when drag reducing polymers are injected through wall slots. The presence of these structures enhances the performance of the drag reducing function by mechanisms which are not understood. This paper shows how particle image velocimetry (PIV) techniques can be used to study changes in the configuration of the injected polymer and in the structure of the velocity field with increasing drag reduction. The filaments are found to behave as solid bodies which break up in high shear regions close to a boundary. The breakup process provides an explanation of why the filaments are not observed close to a wall and offers the possibility of providing a heterogeneous distribution of small aggregates of polymers which could be more effective than uniformly distributed molecules as suggested by Hoyer and Gyr (J Non-Newton Fluid Mech 65:221–240, 1996; J Fluids Eng 120:818–823, 1998), Dunlop and Cox (Phys Fluids 20:203–213, 1977) and Vlachogiannis et al. (Phys Fluid 15:3786–3794, 2004). PIV measurements show dramatic qualitative changes in the velocity patterns at maximum drag reduction.  相似文献   

7.
Local strain data obtained throughout the entire weld region encompassing both the weld nugget and heat affected zones (HAZs) are processed using two methodologies, uniform stress and virtual fields, to estimate specific heterogeneous material properties throughout the weld zone. Results indicate that (a) the heterogeneous stress–strain behavior obtained by using a relatively simple virtual fields model offers a theoretically sound approach for modeling stress–strain behavior in heterogeneous materials, (b) the local stress–strain results obtained using both a uniform stress assumption and a simplified uniaxial virtual fields model are in good agreement for strains ɛ xx < 0.025, (c) the weld nugget region has a higher hardening coefficient, higher initial yield stress and a higher hardening exponent, consistent with the fact that the steel weld is overmatched and (d) for ɛ xx > 0.025, strain localization occurs in the HAZ region of the specimen, resulting in necking and structural effects that complicate the extraction of local stress strain behavior using either of the relatively simple models.
S. M. AdeebEmail:
  相似文献   

8.
9.
The elongational viscosity data of model PS combs (Hepperle J, Einfluss der Molekularen Struktur auf Rheologische Eigenschaften von Polystyrol- und Polycarbonatschmelzen. Doctoral Thesis, University Erlangen-Nürnberg, 2003) are reconsidered by including the interchain pressure term of Marrucci and Ianniruberto [Macromolecules 37:3934–3942, 2004] in the Molecular Stress Function model [Wagner et al., J Rheol 47(3):779–793, 2003, Wagner et al., J Rheol 49:1317–1327, 2005d]. Two nonlinear model parameters are needed to describe elongational flow, β and . The parameterβ determines the slope of the elongational viscosity after the inception of strain hardening. It is directly related to the molecular structure of the polymer and represents the ratio of the molar mass of the (branched) polymer to the molar mass of the backbone alone. β follows from the hypothesis of Wagner et al. [J Rheol 47(3):779–793, 2003] that side chains are compressed onto the backbone. We consider also the case that side chains are oriented by deformation, but not stretched, and found little difference in the model predictions. The parameter represents the maximum strain energy stored in the polymeric system and determines the steady-state value of the viscosity in extensional flows. The relation of this energy parameter to the molecular structure is discussed. Good correlations between the energy parameter and different coil contraction ratios, as determined either experimentally or calculated theoretically by considering the topology of the macromolecule, are found. The smaller the relative size of the polymer coil, the larger is the energy parameter and the more strain energy can be stored in the polymeric system. Presented at the 3rd Annual European Rheology Conference, AERC2006, Crete, Greece.  相似文献   

10.
Following the previous approach of Pham and Torquato (J Appl Phys 94:6591–6602, 2003) and Torquato (J Mech Phys Solids 45:1421–1448, 1997; Random heterogeneous media, Springer, Berlin, 2002), we derive the strong-contrast expansions for the effective elastic moduli K e,G e of d-dimensional multiphase composites. The series consists of a principal reference part and a fluctuation part (perturbation about a homogeneous reference or comparison material), which contains multi-point correlation functions that characterize the microstructure of the composite. We propose a three-point correlation approximation for the fluctuation part with an objective choice of the reference phase moduli, such that the fluctuation terms vanish. That results in the approximations for the effective elastic moduli of isotropic composites, which coincide with the well-known self-consistent and Maxwell approximations for two-phase composites having respective microstructures. Applications to some two-phase materials are given.  相似文献   

11.
In 1996, Muschik and Ehrentraut (J. Non-Equilib. Thermodyn. 21:175–192, 1996) proposed an amendment to the classical Second Law of Thermodynamics, which asserts that, except in equilibria, reversible process directions in state space do not exist. As a consequence of this statement, they proved that the Second Law of Thermodynamics necessarily restricts the constitutive equations and not the thermodynamic processes. In this way, the classical Coleman–Noll approach to the exploitation of Second Law (Coleman and Noll in Arch. Rational Mech. Anal. 13:167–178, 1963) follows by a rigorous proof. In the present paper, we generalize the amendment, in order to encompass the case, not considered in Muschik and Ehrentraut (J. Non-Equilib. Thermodyn. 21:175–192, 1996), in which there are surfaces across which the unknown fields suffer jump discontinuities. Due to the generalization above, we prove that the same conclusions of Muschik and Ehrentraut (J. Non-Equilib. Thermodyn. 21:175–192, 1996) can be achieved also in the presence of non-regular processes. As an application, we study the thermodynamics of a Kortweg-type fluid interface.  相似文献   

12.
Deformation and wobbling of a liquid drop immersed in a liquid matrix were studied under mild shear conditions for various viscosity ratios. In situ visualization experiments were conducted on a homemade transparent Couette cell incorporated to the Paar Physica MCR500 shear rheometer. The effect of drop or matrix elasticity was examined and was found to play a major role in both deformation and wobbling processes. Experimental results were compared to Jackson and Tucker (J Rheol 47:659–682, 2003), Maffettone and Minale (J Non-Newton Fluid Mech 78:227–241, 1998) and Yu and Bousmina (J Rheol 47:1011–1039, 2003) ellipsoidal models. It was found that the agreement between the Newtonian models and the experimental results required an increase in the drop viscosity. Such increment in viscosity was found to scale with the first normal stress difference.  相似文献   

13.
The turbulence structure near a wall is a very active subject of research and a key to the understanding and modeling of this flow. Many researchers have worked on this subject since the fifties Hama et al. (J Appl Phys 28:388–394, 1957). One way to study this organization consists of computing the spatial two-point correlations. Stanislas et al. (C R Acad Sci Paris 327(2b):55–61, 1999) and Kahler (Exp Fluids 36:114–130, 2004) showed that double spatial correlations can be computed from stereoscopic particle image velocimetry (SPIV) fields and can lead to a better understanding of the turbulent flow organization. The limitation is that the correlation is only computed in the PIV plane. The idea of the present paper is to propose a new method based on a specific stereoscopic PIV experiment that allows the computation of the full 3D spatial correlation tensor. The results obtained are validated by comparison with 2D computation from SPIV. They are in very good agreement with the results of Ganapthisubramani et al. (J Fluid Mech 524:57–80, 2005a).  相似文献   

14.
This paper is concerned with the decay structure for linear symmetric hyperbolic systems with relaxation. When the relaxation matrix is symmetric, the dissipative structure of the systems is completely characterized by the Kawashima–Shizuta stability condition formulated in Umeda et al. (Jpn J Appl Math 1:435–457, 1984) and Shizuta and Kawashima (Hokkaido Math J 14:249–275, 1985) and we obtain the asymptotic stability result together with the explicit time-decay rate under that stability condition. However, some physical models which satisfy the stability condition have non-symmetric relaxation term (for example, the Timoshenko system and the Euler–Maxwell system). Moreover, it had been already known that the dissipative structure of such systems is weaker than the standard type and is of the regularity-loss type (see Duan in J Hyperbolic Differ Equ 8:375–413, 2011; Ide et al. in Math Models Meth Appl Sci 18:647–667, 2008; Ide and Kawashima in Math Models Meth Appl Sci 18:1001–1025, 2008; Ueda et al. in SIAM J Math Anal 2012; Ueda and Kawashima in Methods Appl Anal 2012). Therefore our purpose in this paper is to formulate a new structural condition which includes the Kawashima–Shizuta condition, and to analyze the weak dissipative structure for general systems with non-symmetric relaxation.  相似文献   

15.
Recently (Liu in J. Elast. 90:259–270, 2008) thermodynamic theory of elastic (and viscoelastic) material bodies has been analyzed based on the general entropy inequality. It is proved that for isotropic elastic materials, the results are identical to the classical results based on the Clausius-Duhem inequality (Coleman and Noll in Arch. Ration. Mech. Anal. 13:167–178, 1963), for which one of the basic assumptions is that the entropy flux is defined as the heat flux divided by the absolute temperature. For anisotropic elastic materials in general, this classical entropy flux relation has not been proved in the new thermodynamic theory. In this note, as a supplement of the theory presented in (Liu in J. Elast. 90:259–270, 2008), it will be proved that the classical entropy flux relation need not be valid in general, by considering a transversely isotropic elastic material body.   相似文献   

16.
We present the first direct comparisons of rheological data from the lubricated squeezing flow (LSF) technique and the MultiAxiales Dehnrheometer (MAD) instrument developed by Meissner and coworkers (J Rheol 47:989–1010, 2003). Comparisons of transient equibiaxial elongational viscosity are carried out at strain rates well into the nonlinear regime on low-density polyethylene and polystyrene melts. We find data obtained using LSF deviate from the MAD data when the Hencky strain reaches a value of approximately 1, which we interpret as a failure of the LSF technique. The strain at which the LSF technique fails is relatively insensitive to experimental parameters including strain rate. For Hencky strains larger than 1, LSF data display behavior that could easily be mistaken for the phenomenon of strain hardening.  相似文献   

17.
The goal of this article is to derive new estimates for the cost of observability of heat equations. We have developed a new method allowing one to show that when the corresponding wave equation is observable, the heat equation is also observable. This method allows one to describe the explicit dependence of the observability constant on the geometry of the problem (the domain in which the heat process evolves and the observation subdomain). We show that our estimate is sharp in some cases, particularly in one space dimension and in the multi-dimensional radially symmetric case. Our result extends those in Fattorini and Russell (Arch Rational Mech Anal 43:272–292, 1971) to the multi-dimensional setting and improves those available in the literature, namely those by Miller (J Differ Equ 204(1):202–226, 2004; SIAM J Control Optim 45(2):762–772, 2006; Atti Accad Naz Lincei Cl Sci Fis Mat Natur Rend Lincei (9) Mat Appl 17(4):351–366, 2006) and Tenenbaum and Tucsnak (J Differ Equ 243(1):70–100, 2007). Our approach is based on an explicit representation formula of some solutions of the wave equation in terms of those of the heat equation, in contrast to the standard application of transmutation methods, which uses a reverse representation of the heat solution in terms of the wave one. We shall also explain how our approach applies and yields some new estimates on the cost of observability in the particular case of the unit square observed from one side. We will also comment on the applications of our techniques to controllability properties of heat-type equations.  相似文献   

18.
The present study is an extension of a recent paper of Freed et al. (J Mech Phys Solids 56:3003–3020, 2008). The final aim is to describe the transformation toughening behavior of a static crack along an interface between a shape memory alloy (SMA) and a linear elastic isotropic material. With an SMA as an equivalent Huber–Von Mises stress model (hypothesis of symmetric behavior between tension and compression), Freed et al. determine the initiation (ending) phase transformation yield surfaces in terms of the local phase angle introduced by Rice et al. (Metal ceramic interfaces, Pergamon Press, New York, pp 269–294, 1990). In this paper we give the general framework to determine this angle for a model integrating the asymmetry between tension and compression (experimentally measured: Vacher and Lexcellent in Proc ICM 6:231–236, 1991; Orgéas and Favier in Acta Mater 46(15):5579–5591, 2000), the Huber–Von Mises model being only a particular case. We demonstrate the local phase angle existence in an appropriate framing domain and give a sufficient hypothesis for its uniqueness and an algorithm to obtain it. Estimates are obtained in terms of physical quantities such as the Young modulus ratio, the bimaterial Poisson modulus values and also the choice of the yield loading functions. Finally, we illustrate this theoretical study by an application linking the asymmetry intensity on the width and the shape on predicted phase transformation surfaces and by a comparison with the symmetric case.  相似文献   

19.
The dynamics and stability of the high-speed fiber spinning process with spinline flow-induced crystallization and neck-like deformation have been studied using a simulation model equipped with governing equations of continuity, motion, energy, and crystallinity, along with the Phan-Thien–Tanner constitutive equation. Despite the fact that a simple one-phase model was incorporated into the governing equations to describe the spinline crystallinity, as opposed to the best-known two-phase model [Doufas et al. J Non-Newton Fluid Mech, 92:27–66, 2000a]; [Kohler et al. J Macromol Sci Phys, 44:185–202, 2005] that treats amorphous and crystalline phases separately in computing the spinline stress, the simulation has successfully portrayed the typical nonlinear characteristic of the high-speed spinning process called neck-like spinline deformation. It has been found that the criterion for the neck-like deformation to occur on the spinline is for the extensional viscosity to decrease on the spinline, so that the spinning is stabilized by the formation of the spinline neck-like deformation. The accompanying linear stability analysis explains this stabilizing effect of the spinline neck-like deformation, corroborating a recent experimental finding [Takarada et al. Int Polym Process, 19:380–387, 2004].This paper was presented at the 2nd Annual European Rheology Conference 2005 on April 21–23, 2005, in Grenoble, France.  相似文献   

20.
We prove the global existence of solutions for a shape-memory alloys constitutive model at finite strains. The model has been presented in Evangelista et al. (Int J Numer Methods Eng 81(6):761–785, 2010) and corresponds to a suitable finite-strain version of the celebrated Souza–Auricchio model for SMAs (Auricchio and Petrini in Int J Numer Methods Eng 55:1255–1284, 2002; Souza et al. in J Mech A Solids 17:789–806, 1998). We reformulate the model in purely variational fashion under the form of a rate-independent process. Existence of suitably weak (energetic) solutions to the model is obtained by passing to the limit within a constructive time-discretization procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号