首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Flexible energy storage devices are essential for emerging flexible electronics. The existing state-of-the-art Li-ion batteries are slowly reaching their limitation in terms of cost and energy density. Hence, flexible Na-ion batteries(SIBs) with abundance Na resources and Li–S batteries with high energy density become the alternative for the Li-ion batteries in future. This review summarizes the recent advances in the development of flexible electrode materials for SIBs with metallic matrix and carbonaceous matrix such as carbon nano-tubes, carbon nano-fiber, graphene, carbon cloth, carbon fiber cloth, and cotton textiles.Then, the potential prototype flexible full SIBs are discussed. Further, the recent progress in the development of flexible electrode materials for Li–S batteries based on carbon nano-fiber, carbon nano-tubes,graphene, and cotton textiles is reviewed. Moreover, the design strategies of suitable interlayer, separator,electrolyte, and electrodes to prevent the dissolution and shuttle effect of polysulfides in flexible Li–S batteries are provided. Finally some prospective investigation trends towards future research of flexible SIBs and Li–S batteries are also proposed and discussed. The scientific and engineering knowledge gained on flexible SIBs and Li–S batteries provides conceivable development for practical application in near future.  相似文献   

2.
Owing to their low cost, high energy densities, and superior performance compared with that of Li-ion batteries, Li–S batteries have been recognized as very promising next-generation batteries. However, the commercialization of Li–S batteries has been hindered by the insulation of sulfur, significant volume expansion, shuttling of dissolved lithium polysulfides(Li PSs), and more importantly, sluggish conversion of polysulfide intermediates. To overcome these problems, a state-of-the-art strategy is to use sulfur host materials that feature chemical adsorption and electrocatalytic capabilities for Li PS species. In this review, we comprehensively illustrate the latest progress on the rational design and controllable fabrication of materials with chemical adsorbing and binding capabilities for Li PSs and electrocatalytic activities that allow them to accelerate the conversion of Li PSs for Li–S batteries. Moreover, the current essential challenges encountered when designing these materials are summarized, and possible solutions are proposed. We hope that this review could provide some strategies and theoretical guidance for developing novel chemical anchoring and electrocatalytic materials for high-performance Li–S batteries.  相似文献   

3.

The shuttle effect of lithium-sulfur (Li–S) battery is one of the crucial factors restraining its commercial application, because LiPSs (lithium polysulfides) usually leads to poor cycle life and low coulomb efficiency. Some studies have shown that metal oxides can adsorb soluble polysulfides. Herein, CeO2 (cerium-oxide)-doped carbon nanotubes (CeO2@CNTs) were prepared by the hydrothermal method. The polar metal oxide CeO2 enhanced the chemisorption of the cathode to LiPSs and promoted the redox reaction of the cathode through catalysis properties. Meanwhile, the carbon nanotubes (CNTs) enhanced cathode conductivity and achieved more sulfur loading. The strategy could alleviate polysulfide shuttling and accelerate redox kinetics, improving Li–S batteries' electrochemical performances. As a result, the CeO2@CNTs/S composite cathode showed the excellent capacity of 1437.6 mAh g−1 in the current density of 167.5 mA g−1 at 0.1 C, as well as a long-term cyclability with an inferior capacity decay of 0.17% per cycle and a superhigh coulombic efficiency of 100.434% within 300 cycles. The superior electrochemical performance was attributed to the polar adsorption of CeO2 on polysulfides and the excellent conductivity of CNTs.

  相似文献   

4.
All-solid-state cells using sulfur-based cathode materials and Li2S–P2S5 glass–ceramic electrolytes were successfully prepared and exhibited excellent cycling performance at room temperature. The cathode materials consisting of sulfur and CuS were synthesized by mechanical milling using sulfur and copper crystals as starting materials. The cell performance was influenced by the milling time for the cathode materials and the cell with cathode materials obtained by milling for 15 min retained large capacities over 650 mA h g−1 for 20 cycles. Sulfur as well as CuS in cathode materials proved to be utilized as active materials on charge–discharge processes in the all-solid-state Li/S cells.  相似文献   

5.
Aptamer-based electrochemical sensors are now developed for the detection of a wide variety of analytes including ions, low-molecular-weight molecules, proteins, and living cells. An aptamer-based sensor is an analytical device whose bio-sensing element (i.e. the aptamer) is immobilized on a transducer surface. Aptasensors have attracted great attention because of their high selectivity, sensitivity, and stability; they could be miniaturized and are of low production cost and offer extraordinary flexibility in the design of their assemblies. This review will emphasize recent developments of aptasensors using aptamers that are able to adopt the particular G-quadruplex (G4) conformations, which are secondary DNA structures formed from guanine-rich sequences. Indeed, G4 exhibits notable recognition properties inherent to their particular structuration.  相似文献   

6.
Flexible zinc–air batteries attract more attention due to their high energy density, safety, environmental protection, and low cost. However, the traditional aqueous electrolyte has the disadvantages of leakage and water evaporation, which cannot meet application demand of flexible zinc–air batteries. Hydrogels possessing good conductivity and mechanical properties become a candidate as the electrolytes of flexible zinc–air batteries. In this work, advances in aspects of conductivity, mechanical toughness, environmental adaptability, and interfacial compatibility of hydrogel electrolytes for flexible zinc–air batteries are investigated. First, the additives to improve conductivity of hydrogel electrolytes are summarized. Second, the measures to enhance the mechanical properties of hydrogels are taken by way of structure optimization and composition modification. Third, the environmental adaptability of hydrogel electrolytes is listed in terms of temperature, humidity, and air composition. Fourth, the compatibility of electrolyte–electrode interface is discussed from physical properties of hydrogels. Finally, the prospect for development and application of hydrogels is put forward.  相似文献   

7.
An electrolyte partially-wetted cathode for Li–air batteries has been studied in this work. By evaporation of diethyl ether from the organic electrolyte, the cathode is partially filled with electrolyte. Compared to conventional flooded cathodes, a partially wetted cathode allows the gaseous oxygen to penetrate fast into the interior part of the porous cathode for the electrochemical reaction. The effective electrode area for oxygen reduction is increased which enhances the cathode kinetics. Using typical cathode materials, the partially wetted cathodes present a 60% higher discharge capacity at 0.1 mA cm 2 and one magnitude higher rate capability than the flooded cathode.  相似文献   

8.
Journal of Solid State Electrochemistry - Porous cathodes are preferred to be used in lithium-sulfur (Li–S) batteries for better impregnation of the active material. On the other hand, the...  相似文献   

9.
In this communication, we present some new findings on surface oxidized carbon nanotubes (CNTs) when used as cathode of Li–O2 batteries. It is found that the content of oxygen-containing functional groups has a significant influence on the electrochemical performance of Li–O2 batteries, by altering the electrical conductivity and density of electrocatalytically active sites of the CNTs and promoting side reactions of the electrolyte. An optimal surface oxygen atomic content of 6.0 at.% on CNTs is found to reach a balance and give the best cycling stability of the Li–O2 battery under constant capacity and constant current density tests.  相似文献   

10.
To date, most of the research on electrodes for lithium sulfur batteries has been focused on the nanostructured sulfur cathodes and achieves significant success. However, from the viewpoint of manufacturers, the nanostructured sulfur cathodes are not so promising, because of the low volumetric energy density and high cost. In this work, we obtained the low-cost, scalable, eco-friendly mass production of edge-functionalized acetylene black-sulfur(FAB-S) composites by high-energy ball-milling technique for lithium sulfur batteries. The as-prepared FAB-S composite can deliver a high initial discharge capacity of 1304 mAh/g and still remain a reversible capacity of 814 mAh/g after 200 cycles at a charge-discharge rate of 0.2 C in the voltage range of 1.7–2.7 V. The observed excellent electrochemical properties demonstrate that the cathodes obtained by the facile high-energy ball-milling method as the cathode for rechargeable Li-S batteries are of great potential because it used the sole conductive additive acetylene black(AB).Such improved properties could be attributed to the partially exfoliation of AB, which not only keeps the AB's inherent advantage, but also increases the specific surface area and forms chemical bonds between carbon and sulfur, resulting in the accumulation of the polysulfides intermediate through both the physical and chemical routes.  相似文献   

11.
Electrospun fibrous membranes of composites of polyvinylidene fluoride and polyacrylonitrile (PVdF–PAN–ESFMs) are prepared with different proportions of PAN (25, 50 and 75%, w/w). The morphology of the ESFMs is examined by field emission scanning electron microscopy (FESEM). FESEM image of PVdF–ESFM reveals that the fibers have uniform diameters and smooth surfaces. However, the fibers of PVdF–PAN–ESFMs are interconnected with large number of voids and cavities of different sizes. These voids are effectively utilized for the preparation of polymer electrolytes by loading lithium perchlorate dissolved in propylene carbonate. PVdF–PAN–ESFM with 25% PAN (designated as PVdF–PAN(25)–ESFM) could load a high amount of lithium salt with electrolyte uptake of more than 300%. PVdF–PAN(25)–ESFM electrolyte exhibits a high conductivity of 7.8 mS cm−1 at 25 °C and electrochemically stable up to 5.1 V. Also, the addition of PAN into PVdF decreases the interfacial resistance with lithium electrode. PVdF–PAN–ESFM electrolytes have complementary advantageous characteristics of PVdF and PAN. The promising results reported here clearly indicate that polymer electrolytes based on PVdF–PAN–ESFMs are most suited for lithium batteries.  相似文献   

12.
The presence of a dynamic and balanced equilibrium between the production of reactive oxygen (ROS) and nitrogen (RNS) species and the in-house antioxidant defense mechanisms is characteristic for a healthy body. During oxidative stress (OS), this balance is switched to increased production of ROS and RNS, exceeding the capacity of physiological antioxidant systems. This can cause damage to biological molecules, leading to loss of function and even cell death. Nowadays, there is increasing scientific and clinical interest in OS and the associated parameters to measure the degree of OS in biofluids. An increasing number of reports using LC–MS/MS methods for the analysis of OS biomarkers can be found. Since bioanalysis is usually complicated by matrix effects, various types of cleanup procedures are used to effectively separate the biomarkers from the matrix. This is an essential part of the analysis to prepare a reproducible and homogenous solution suitable for injection onto the column. The present review gives a summary of the chromatographic methods used for the determination of OS biomarkers in both urine and plasma, serum, and whole blood samples. The first part mainly describes the biological background of the different OS biomarkers, while the second part reports examples of chromatographic methods for the analysis of different metabolites connected with OS in biofluids, covering a period from 2015 till early 2020. The selected examples mainly include LC–MS/MS methods for isoprostanes, oxidized proteins, oxidized lipoproteins, and DNA/RNA biomarkers. The last part explains the clinical relevance of this review.  相似文献   

13.
We present here a soft matter solid composite electrolyte obtained by inclusion of a polymer in a semi-solid organic plastic lithium salt electrolyte. Compared to lithium bis-trifluoromethanesulfonimide-succinonitrile (LiTFSI-SN), the (100  x)%-[LiTFSI-SN]: x%-P (P: polyacrylonitrile (PAN), polyethylene oxide (PEO), polyethylene glycol dimethyl ether (PEG)) composites possess higher ambient temperature ionic conductivity, higher mechanical strength and wider electrochemical window. At 25 °C, ionic conductivity of 95%-[0.4 M LiTFSI-SN]: 5%-PAN was 1.3 × 10−3 Ω−1 cm−1 which was twice that of LiTFSI-SN. The Young’s modulus (Y) increased from Y  0 for LiTFSI-SN to a maximum ∼1.0 MPa for (100  x)%-[0.4 M LiTFSI-SN]: x%-PAN samples. The electrochemical voltage window for composites was approximately 5 V (Li/Li+). Excellent galvanostatic charge/discharge cycling performance was obtained with composite electrolytes in Li|LiFePO4 cells without any separator.  相似文献   

14.
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in aprotic solvents are elementary reactions for the discharging and charging processes on the cathode of the lithium-oxygen batteries, respectively. Understanding the mechanisms of these reactions at a molecular level has now become a bottleneck that hinders the development of the battery. This short article briefly reviews recent progresses in the studies of the ORR/OER mechanism in aprotic solvents. Two reaction mechanisms, the electrochemical pathway and chemical (disproportionation) pathway, will be discussed with their contribution to the ORR process on the cathode surface. Furthermore, the origin of the OER overpotential will also be discussed. The solutions to reduce the OER overpotential are noted with development of redox mediators.  相似文献   

15.
Journal of Solid State Electrochemistry - Although lithium–sulfur batteries are promising replacements for conventional lithium-ion batteries, their commercial applications have been limited...  相似文献   

16.
Sm–Co alloys are the most promising candidates for high temperature applications in advanced power systems owing to their high Curie temperature and high thermal stability of the magnetic performance. The recently developed nanocrystalline Sm–Co based magnets exhibit great potentials for magnetic performance enhancement and are expected to enlarge applications to services under extreme conditions. However, there have been few comprehensive reviews on the development of the nanocrystalline Sm–Co magnets so far. The efforts in this article are paid to review the recent progress in both experimental and modeling studies on the nanocrystalline Sm–Co magnets. Particularly, the latest advances in nanostructuring technologies, doping modulation, data-driven composition design and strategies for enhancement of magnetic properties have been introduced and evaluated. Finally, new challenges and opportunities regarding the future development of high-performance nanocrystalline Sm–Co based magnets are proposed.  相似文献   

17.
Russian Journal of Applied Chemistry - Joint precipitation of tin(IV) and magnesium hydroxides from hydrochloric acid solutions was studied by differential thermal and X-ray diffraction analysis,...  相似文献   

18.
A mixture electrolyte based on dimethyl sulfoxide (DMSO) and 1-butyl-1-methyl-pyrrolidinium bis(trifluoromethylsulfonyl)imide, [BMP][NTf2], with excellent reversibility of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) has been reported for Li–O2 batteries. The effect of the mixture electrolyte on current density, oxygen solubility, diffusion coefficient and oxygen reduction reaction (ORR) mechanism was investigated. The presence of [BMP][NTf2] increases the solubility of oxygen and while DMSO improves the reversibility of ORR and OER by facilitating the solubility of Li2Ox. Cyclic voltammetric studies showed that mixed electrolyte showed significantly enhanced current density and reversibility for ORR and OER compared to pure DMSO or [BMP][NTf2].  相似文献   

19.
Discharge/charge characteristics of Li–O2 batteries at a test temperature of 343 K, using Super P carbon electrodes, have been explored in this paper based on ether-based electrolytes. Compared with ambient temperature, high temperature significantly influences the discharge/charge process of Li–O2 batteries since discharging capacity increases at about 80 % and charging voltage plateau decreases from 4.2 to 3.5 V. The stability of stainless steel mesh with electrolyte at 343 K has been researched using cyclic voltammetry. This paper lays the bases for further research on Li–O2 batteries in high-temperature areas.  相似文献   

20.
In this paper, porous carbon was synthesized by an activation method, with phenolic resin as carbon source and nanometer calcium carbonate as activating agent. Sulfur–porous carbon composite material was prepared by thermally treating a mixture of sublimed sulfur and porous carbon. Morphology and electrochemical performance of the carbon and sulfur–carbon composite cathode were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectra (EIS), and galvanostatic charge–discharge test. The composite containing 39 wt.% sulfur obtained an initial discharge capacity of about 1,130 mA?h g?1 under the current density of 80 mA?g?1 and presented a long electrochemical stability up to 100 cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号