首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lithium metal has been considered to be the most promising anode material for the new generation of energy-storage system.However,challenges still stand in protecting lithium metal from spontaneous reactions with electrolytes and preventing the dendritic propagation,both of which would lead to undesirable decrease in Coulombic efficiency.Polysulfone(PSf)membrane with high rigidity and free-volume cavities of approximately 0.3 nm was employed to provide a stable interface on the surface of anodic electrode.The isotropic channels were constructed by the interconnected and uniformly distributed free volumes in the polymer matrix,and were expected to be swelled by solvent molecules and anions of lithium salt and to allow Li~+ions to pass through onto the electrode surface.As a result,dendrite-free morphology of deposited lithium was observed.The stabilized interface arose from the PSf film was verified by the promoted performances of Cu|Li cells and steady voltage polarization of Li|Li cells.The full cell with PSf coated anode exhibited excellent cyclability(85% capacity retention rate over 400 cycles at 1C)and an outstanding rate capability(117 m Ah g~(-1) at 5C).The beneficial performances were further verified by the EIS results.This work provides a new strategic idea to settle the dendritic problems of Li metal anodes.  相似文献   

2.
关俊  李念武  于乐 《物理化学学报》2021,37(2):2009011-0
金属锂具有极高的比容量(3860 mAh·g?1)和最低的电化学反应电位(相对标准氢电位为?3.040 V),被认为是高能量密度二次电池最具潜力的负极材料。然而金属锂负极界面稳定性差、不可控的枝晶生长、沉积/剥离过程中巨大的体积变化等严重阻碍了金属锂负极的商业化应用。在金属锂表面构建一层物理化学性质稳定的人工界面保护层被认为是解决金属锂负极界面不稳定和枝晶生长,缓解体积膨胀带来的界面波动等一系列问题的有效手段。本综述依据界面传导性质,从离子导通而电子绝缘的人工固态电解质界面(SEI)层、离子/电子混合传导界面、纳米界面钝化层三个部分对人工界面保护层进行了归纳总结。分析了人工界面保护层的物质结构与性能之间的构效关系,探讨了如何提高人工界面保护层的物理化学稳定性、界面离子输运、界面强度与柔韧性、界面兼容性等。最后,指出用于金属锂负极的人工界面保护层目前面临的主要挑战,并对其未来的发展进行了展望。  相似文献   

3.
The solid electrolyte interface (SEI) plays an important role in the lithium–sulfur battery system. It not only protects the stability of the lithium metal anode interface but also inhibits the growth of lithium dendrites during charge and discharge. The relationship between the shape of the SEI and the transport behavior of lithium ions affects the homogeneity of lithium dendrites. In this work, first-principles calculations are used to determine the stable structure and transport properties of the La-doped LiF solid electrolyte interface (La–LiF SEI) on the Li substrate. For the vertical transport of Li ions within the La–LiF SEI, the transport of Li ions in the grain boundary and that in the crystal grain was calculated separately. Regarding the plane diffusion behavior of Li ions between the La–LiF SEI and the lithium anode, the diffusion of Li ions on the surface and interface of the lithium anode were calculated. The effect of critical tensile strain on the diffusion of Li ions on the surface and interface was investigated. The results show that doping with La solves the problem of excessive periodic grain boundary gaps caused by the difference between LiF and Li lattices during the deposition process. The periodic gap is reduced from 0.478 nm to 0.306 nm after La doping. By comparing the migration energy barriers of each path, it is found that lithium ions are more likely to be inserted and extracted at the La–LiF SEI grain boundary. The reason is that the existence of the rare earth element La causes the grain boundary to have a more stable vacancy structure and a smaller transport energy barrier (0.789 eV). The critical tensile strain reduces the diffusion energy barrier (0.813 eV) of Li ions on the surface of the lithium metal anode, which promotes the fast diffusion and uniform deposition of Li ions between the interfaces. The establishment of SEI transport characteristics under the coupling conditions of mechanical stretching and ion transport is expected to improve the Li deposition behavior.  相似文献   

4.
Although a lithium metal anode has a high energy density compared with a carbon insertion anode, the poor rechargeability prevents the practical use of anode materials. A lithium electrode coated with Li2CO3 was prepared as a negative electrode to enhance cycleability through the control of the solid electrolyte interface (SEI) layer formation in Li secondary batteries. The electrochemical characteristics of the SEI layer were examined using chronopotentiometry (CP) and impedance spectroscopy. The Li2CO3-SEI layer prevents electrolyte decomposition reaction and has low interface resistance. In addition, the lithium ion diffusion in the SEI layer of the uncoated and the Li2CO3-coated electrode was evaluated using chronoamperometry (CA).  相似文献   

5.
Lithium metal is a very promising anode material for achieving high energy density for next generation battery systems due to its low redox potential and high theoretical specific capacity of 3860 mA h g−1. However, dendrite formation and low coulombic efficiency during cycling greatly hindered its practical applications. The formation of a stable solid electrolyte interphase (SEI) on the lithium metal anode (LMA) holds the key to resolving these problems. A lot of techniques such as electrolyte modification, electrolyte additive introduction, and artificial SEI layer coating have been developed to form a stable SEI with capability to facilitate fast Li+ transportation and to suppress Li dendrite formation and undesired side reactions. It is well accepted that the chemical and physical properties of the SEI on the LMA are closely related to the kinetics of Li+ transport across the electrolyte–electrode interface and Li deposition behavior, which in turn affect the overall performance of the cell. Unfortunately, the chemical and structural complexity of the SEI makes it the least understood component of the battery cell. Recently various advanced in situ and ex situ characterization techniques have been developed to study the SEI and the results are quite interesting. Therefore, an overview about these new findings and development of SEI engineering and characterization is quite valuable to the battery research community. In this perspective, different strategies of SEI engineering are summarized, including electrolyte modification, electrolyte additive application, and artificial SEI construction. In addition, various advanced characterization techniques for investigating the SEI formation mechanism are discussed, including in situ visualization of the lithium deposition behavior, the quantification of inactive lithium, and using X-rays, neutrons and electrons as probing beams for both imaging and spectroscopy techniques with typical examples.

Different strategies of SEI engineering such as modification, additive application, and artificial SEI for electrolyte are summarized. Characterization techniques for SEI studies using X-ray, neutron, and electron as probing beams are discussed.  相似文献   

6.
7.
In order to discuss the effect of polymer coating layer on the Sn anode, the composition and morphology of the solid electrolyte interphase (SEI) film on the surface of Sn and Sn@PEO anode materials have been investigated. Compared with the bare cycled Sn electrode, the SEI on the surface of cycled Sn@PEO electrode is thinner, smoother, and more stable. Therefore, the Sn@PEO nanoparticles can basically keep the original appearance during cycling. Based on the results obtained from X-ray photoelectron spectroscopy (XPS), the SEI formed on the Sn@PEO electrode is characterized by inorganic components (Li2CO3)-rich outer layer and organic components-rich inner which could make the SEI more stable and inhibit the electrolyte immerging into the active materials. In particular, the elastic ion-conductive polyethylene oxide (PEO) coating could increase the toughness of SEI and allow the SEI to endure the stress variation in repetitive lithium insertion and extraction process. As a result, the Sn@PEO electrodes show significantly better capacity retention than bare Sn electrodes. The findings can serve as the theoretical foundation for the design of lithium-ion battery electrode with high energy density and long cycle life.  相似文献   

8.
Polymers of intrinsic microporosity (PIMs) are promising materials for membrane separation because their special rigid and contorted structures contribute to high permeability. However, their chain rearrangement to fill excessive free volume makes the permeability stability a tough challenge. In this work, we report on a new use of rutile nano-TiO2 to mitigate the physical aging of PIM-1 (a typical PIM) nanofilms for stable permeability by mixing matrix. It was shown that the PIM-1 membrane incorporated with nano-TiO2 displayed remarkably higher aging resistance with a lower swelling degree in long-term ethanol soaking, having more stable ethanol permeance with only a 5% decrease after 35 days, lower than 25% of the pure one. The mechanism of anti-aging was revealed by molecular simulation, thermal, tensile mechanical, and dynamic mechanical analysis. It was found that nano-TiO2 had good compatibility with PIM-1 due to strong coordination interaction, making its uniform dispersion in polymer. Additional solvent permeation channels were also created to increase solvent permeance without compromising solute rejection. Due to the reliable interaction of nano-TiO2, which makes particles serve as physical crosslinking points, the movement of PIM-1 chains was limited partially to mitigate aging, enabling PIM-1-based membranes to have robust solvent permeation.  相似文献   

9.
尽管传统的石墨负极在商业化锂离子电池中取得了成功,但其理论容量低(372 mAh·g?1)、本身不含锂的先天缺陷限制了其在下一代高比能量锂电池体系中的应用,特别是在需要锂源的锂-硫和锂-空气电池体系中。金属锂因其极高的理论比容量(3860 mAh·g?1)和低氧化还原电势(相对于标准氢电极为?3.040 V),被认为是下一代锂电池负极材料的最佳选择之一。但是,金属锂负极存在库伦效率低、循环性能差、安全性差等一系列瓶颈问题亟待解决,而循环过程中锂枝晶的生长、巨大的体积变化、以及电极界面不稳定等是导致这些问题的关键因素。本文综述了近年来关于金属锂负极瓶颈问题及其机理,包括金属锂电极表面固态电解质界面膜的形成,锂枝晶的生长行为,以及惰性死锂的形成。同时,本文还介绍了目前用于研究金属锂负极的先进表征技术,这些技术为研究人员深入认识金属锂负极的失效机制提供了重要信息。  相似文献   

10.
An artificial solid electrolyte interface (SEI) of a graphene composite lithium salt can inhibit the growth of dendrites by driving the lithium deposition behavior on the surface of the lithium metal anode. The first-principle method was used to calculate the graphene/lithium nitride SEI, including the structural form and stability of intrinsic (G-Li3N), single-vacancy defect (SVG-Li3N), and double-vacancy defect (DVG-Li3N) graphene heterostructure. The adsorption and migration behavior of lithium ions on the heterostructure surface and the interface were also calculated. This study showed that the modification of double-vacancy defect graphene improved the stability of the heterostructure, and the adhesion work of the composite SEI is the highest. The modification of defective graphene increases the adsorption energy of lithium atoms on the surface and interface of the heterostructure: the strongest adsorption of Li atoms on the single-vacancy defect region of the heterostructure, the opposition migration pathway of Li atoms on the surface and interface of the DVG-Li3N heterostructure, and the decrease diffusion energy of Li atoms on the surface and interface of the DVG-Li3N heterostructure. A composite layered SEI of graphene and Li3N was constructed to inhibit dendritic growth by adjusting the deposition behavior of lithium atoms.  相似文献   

11.
锂金属以其高比容量和低电极电势,在高能量密度电池领域具有极大潜力,然而界面反应复杂、枝晶生长难以抑制等问题,导致电池易燃易爆、容易击穿短路,极大地限制了锂电池的应用。计算模拟有助于科研工作者认识反应机理、预测筛选电极材料以及优化电池设计,与实验相辅相成。本文对近年计算模拟在锂金属电极中的应用进行综述,重点在于利用分子动力学、第一性原理计算等计算方法,研究界面反应、固体电解质膜以及锂形核。此外,新开发的固态电解质很好地解决了传统锂电池易燃易爆等问题,提高了能量密度,但也存在界面阻力大、传导性能差以及枝晶生长等问题,对此,我们就计算模拟在固态电解质锂电池中锂负极的应用进行综述。最后,我们论述了该领域潜在研究方向。  相似文献   

12.
通过N-丁基-N-甲基哌啶双(氟磺酰)亚胺盐离子液体和双(氟磺酰)亚胺锂盐修饰了Li|Li10GeP2S12界面,并研究了界面的改性效果.研究结果表明,在界面处原位生成一层致密的固体电解质界面膜(SEI),具有一定流变性的离子液体可渗透到Li10GeP2S12晶粒内部;在0.1 mA/cm2的电流密度下,界面改性后的Li|Li10GeP2S12|Li对称电池可稳定循环1500 h以上,极化电压仅为30 mV.在2.5~3.6 V电压范围内,Li|Li10GeP2S12|LiFePO4电池在0.2C倍率下充放电循环的首次放电比容量为148.1 mA·h/g,库仑效率为95.8%,经过30次循环后容量保持率为90.1%.  相似文献   

13.
Safe and rechargeable lithium metal batteries have been difficult to achieve because of the formation of lithium dendrites. Herein an emerging electrolyte based on a simple solvation strategy is proposed for highly stable lithium metal anodes in both coin and pouch cells. Fluoroethylene carbonate (FEC) and lithium nitrate (LiNO3) were concurrently introduced into an electrolyte, thus altering the solvation sheath of lithium ions, and forming a uniform solid electrolyte interphase (SEI), with an abundance of LiF and LiNxOy on a working lithium metal anode with dendrite‐free lithium deposition. Ultrahigh Coulombic efficiency (99.96 %) and long lifespans (1000 cycles) were achieved when the FEC/LiNO3 electrolyte was applied in working batteries. The solvation chemistry of electrolyte was further explored by molecular dynamics simulations and first‐principles calculations. This work provides insight into understanding the critical role of the solvation of lithium ions in forming the SEI and delivering an effective route to optimize electrolytes for safe lithium metal batteries.  相似文献   

14.
The use of a lithium metal anode still presents a challenging chemistry and engineering problem that holds back next generation lithium battery technology. One of the issues facing lithium metal is the presence of the solid electrolyte interphase (SEI) layer that forms on the electrode creating a variety of chemical species that change the properties of the electrode and is closely related to the formation and growth of lithium dendrites. In order to advance the scientific progress of lithium metal more must be understood about the fundamentals of the SEI. One property of the SEI that is particularly critical is the passivating behavior of the different SEI components. This property is critical to the continued formation of SEI and stability of the electrolyte and electrode. Here we report the investigation of the passivation behavior of Li2O, Li2CO3, LiF and LiOH with the lithium salt LiFSI. We used large computational chemistry models that are able to capture the lithium/SEI interface as well as the SEI/electrolyte interface. We determined that LiF and Li2CO3 are the most passivating of the SEI layers, followed by LiOH and Li2O. These results match previous studies of other Li salts and provide further examination of LiFSI reduction.  相似文献   

15.
合成了一种腈基功能化有机硅化合物3-氰乙基-二乙氧基-甲基硅烷(DESCN), 并对其化学结构和电化学窗口进行了表征. 采用恒流充放电、 扫描电子显微镜(SEM)、 X射线光电子能谱(XPS)及电化学阻抗谱(EIS)等方法研究了DESCN添加剂对LiFePO4电池低温性能的影响. 结果表明, DESCN化合物能够在电极表面参与形成更薄、 更均匀且致密的固体电解质界面(SEI)膜, 抑制电解液副反应的发生, 减小界面膜阻抗, 有利于低温下电极/电解液界面的Li+扩散和电荷转移, 从而提高LiFePO4电池的低温性能.  相似文献   

16.
采用原位聚合法制备了含有N-甲基、丙基哌啶双三氟甲磺酰亚胺离子液体的凝胶型聚合物电解质.利用SEM和XPS测试了电解质膜与LiFePO4电极的界面状态,充放电循环后,在电解质膜与LiFePO4之间有一层薄膜,这层薄膜中含有N和S元素.结果表明,随着充放电的不断进行,凝胶型电解质中未聚合的甲基丙烯酸甲酯与电极表面的锂离子之间发生电子转移,形成SEI膜,至少要三个循环后才能形成稳定的SEI膜.随着SEI膜的增厚,放电容量增加,阻碍了电子转移,使系统更加的稳定.在不同倍率下测试了凝胶型离子液体/PMMA聚合物电解质电池性能,当充放电达到30个循环时,0.2、0.5和1C下电池比容量分别为132、128和120mAh/g.  相似文献   

17.
锂离子二次电池是手提设备的重要电力来源。近年来,人们为了寻找更新颖更好的锂离子电极材料,开始研究晶形离子交换材料,这种材料具有开放孔道,能够让离子在多孔框架里自由的进出。一种具有层状结构的钛硅酸盐Na-JDF-L1(Na4Ti2Si8O22·4H2O)经过离子交换后被用作锂离子负极材料。它在循环200次后放电容量保持在364 mAh·g-1,并且库伦效率约为100%。通过将TiO2引入Li(Na)-JDF-L1中,有效的提高了材料的首次库伦效率和倍率放电性能。  相似文献   

18.
金属锂因其具有极高的理论容量(3860 mAh·g?1)、最低的电极电位(?3.04 V vs.标准氢电极)和低的密度(0.534 g·cm?3),被认为是最具潜力的负极材料。但循环过程中不可控的枝晶生长及不稳定的固体电解质相界面膜所引起的安全隐患和电池库伦效率低等问题严重阻碍了锂金属负极的发展。通过在电极表面构建人造保护膜可以有效调控锂离子沉积行为,因此人造保护膜的构建是一种简单高效抑制锂枝晶生长的策略。本综述将从聚合物保护膜、无机保护膜、有机-无机复合保护膜和合金保护膜总结了人造保护膜的构建方法、抑制锂枝晶生长机理,为促进高比能锂金属电池的商业化应用提供借鉴参考作用。  相似文献   

19.
锂离子二次电池是手提设备的重要电力来源。近年来, 人们为了寻找更新颖更好的锂离子电极材料, 开始研究晶形离子交换材料, 这种材料具有开放孔道, 能够让离子在多孔框架里自由的进出。一种具有层状结构的钛硅酸盐Na-JDF-L1(Na4Ti2Si8O22·4H2O)经过离子交换后被用作锂离子负极材料。它在循环200次后放电容量保持在364 mAh·g-1, 并且库伦效率约为100%。通过将TiO2引入Li(Na)-JDF-L1中, 有效的提高了材料的首次库伦效率和倍率放电性能。  相似文献   

20.
丁磺酸内酯对锂离子电池性能及负极界面的影响   总被引:5,自引:0,他引:5  
用循环伏安(CV)、电化学阻抗谱(EIS)、扫描电镜(SEM)、能谱分析(EDS)及理论计算等方法研究了添加剂丁磺酸内酯(BS)对锂离子电池负极界面性质的影响. 研究表明, 在初次循环过程中, BS具有较低的最低空轨道能量, 优先于溶剂在石墨电极上还原分解, 并形成固体电解质相界面膜(SEI膜). 在含BS的电解液中形成的SEI膜的热稳定性高, 在70 ℃下储存24 h后, 膜电阻和电荷迁移电阻大小基本保持不变, 而在不含BS的电解液中形成的SEI膜的热稳定性较差, 在70 ℃下储存24 h后, 膜电阻和电荷迁移电阻大小有明显的增加. 从BS对锂离子电池电化学性能影响的研究表明, 加入少量的BS能够显著提高锂离子电池的室温放电容量、低温及高温储存放电性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号