首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The interaction of single-layer hexagonal boron nitride (h-BN) on Ni(111) with molecular oxygen from a supersonic molecular beam led to a covalently bonded molecular oxygen species, which was identified as being between a superoxide and a peroxide. This is a rare example of an activated adsorption process leading to a molecular adsorbate. The amount of oxygen functionalization depended on the kinetic energy of the molecular beam. For a kinetic energy of 0.7 eV, an oxygen coverage of 0.4 ML was found. Near-edge X-ray adsorption fine structure (NEXAFS) spectroscopy revealed a stronger bond of h-BN to the Ni(111) substrate in the presence of the covalently bound oxygen species. Oxygen adsorption also led to a shift of the valence bands to lower binding energies. Subsequent temperature-programmed X-ray photoelectron spectroscopy revealed that the oxygen boron bonds are stable up to approximately 580 K, when desorption, and simultaneously, etching of h-BN set in. The experimental results were substantiated by density functional theory calculations, which provided insight to the adsorption geometry, the adsorption energy and the reaction pathway.  相似文献   

2.
We explored the aspirin adsorption and their hydrogen evolution reaction (HER) activity in waste water of borocarbonitride sheets. Our results indicate that BCN sheets considered here show HER activity and exhibit superior performance regarding adsorption of aspirin in waste water in comparison with graphene and hexagonal boron nitride (h-BN). The drug molecule (aspirin) possesses a strong affinity to BCN, with the order of binding energy on following the order BCN∼h-BN>graphene. Upon drug adsorption, the band gap of h-BN is found to be reduced by up to 33 %, whereas the bandgaps of graphene and BCN remain unaltered that makes BCN a potential candidate for HER in waste water.  相似文献   

3.
Our ab initio calculations indicate that the interaction of deoxyribonucleic/ribonucleic acid (DNA/RNA) nucleobases [guanine (G), adenine (A), thymine (T), cytosine (C), and uracil (U)] with the hexagonal boron nitride (h-BN) sheet, a polar but chemically inert surface, is governed by mutual polarization. Unlike the case of graphene, all nucleobases exhibit the same stacking arrangement on the h-BN sheet due to polarization effects: the anions (N and O atoms) of nucleobases prefer to stay on top of cations (B) of the substrate as far as possible, regardless of the biological properties of nucleobases. The adsorption energies, ranging from 0.5 eV to 0.69 eV, increase in the order of U, C, T, A and G, which can be attributed to different side groups or atoms of nucleobases. The fundamental nature of DNA/RNA nucleobases and h-BN sheet remains unchanged upon adsorption, suggesting that the h-BN sheet is a promising template for DNA/RNA-related research, such as self-assembly.  相似文献   

4.
In this paper, we report on a promoting novel process for the formation of h-BN plates by using N,N-dimethyl formamide-treated boric acid (DMF-BA). Using this B source, the formation of h-BN can be indeed improved greatly compared to using pure boric acid (BA). This method effectively reduces the content of boric acid and amorphous boric oxide, enhancing the transformation rate of h-BN. For preparation of pure h-BN, it can obviously lower the resultant temperature without further purification process. Via graphitization index (G.I.) calculation and thermostability analysis, the pure h-BN plates obtained from the DMF-BA would be a promising candidate for raw material of c-BN and low-temperature applications in the air.  相似文献   

5.
Heterogeneous hydrogenation with hydrogen spillover has been demonstrated as an effective route to achieve high selectivity towards target products. More effort should be paid to understand the complicated correlation between the nature of supports and hydrogenation involving hydrogen spillover. Herein, we report the development of the hydrogenation system of hexagonal boron nitride (h-BN)-supported Pd nanoparticles for the hydrogenation of aldehydes/ketones to alcohols with hydrogen spillover. Nitrogen vacancies in h-BN determine the feasibility of hydrogen spillover from Pd to h-BN. The hydrogenation of aldehydes/ketones with hydrogen spillover from Pd proceeds on nitrogen vacancies on h-BN. The weak adsorption of alcohols to h-BN inhibits the deep hydrogenation of aldehydes/ketones, thus leading to high catalytic selectivity to alcohols. Moreover, the hydrogen spillover-based hydrogenation mechanism makes the catalyst system exhibit a high tolerance to CO poisoning.  相似文献   

6.
The adsorption of atomic hydrogen on hexagonal boron nitride (h-BN) is studied using two element-specific spectroscopies, i.e., near-edge x-ray absorption fine structure (NEXAFS) spectroscopy and x-ray photoelectron spectroscopy (XPS). B K-edge NEXAFS spectra show a clear change in the energy region of the π* band before and after reaction with atomic deuterium. On the other hand, N K-edge NEXAFS spectra show only a little change. B 1s XPS spectra show a distinct component at the low binding energy side of a main component, while N 1s XPS spectra show peak broadening at the high binding energy side. These experimental results are analyzed by the discrete variational Xα method with a core-hole effect and are explained by a model in which hydrogen atoms are preferentially adsorbed on the B sites of h-BN. Based on the experimental and theoretical results, we propose a site-selective property of BN material on adsorption of atomic hydrogen.  相似文献   

7.
Two-dimensional (2D) hexagonal boron-nitride oxide (h-BNO) is a structural analogue of graphene oxide. Motivated by recent experimental studies of graphene oxide, we have investigated the chemical oxidation of 2D h-BN sheet and the associated electronic properties of h-BNO. Particular emphasis has been placed on the most favorable site(s) for chemisorption of atomic oxygen, and on the migration barrier for an oxygen atom hopping to the top, bridge, or hollow site on the h-BN surface, as well as the most likely pathway for the dissociation of an oxygen molecule on the h-BN surface. We find that when an oxygen atom migrates on the h-BN surface, it is most likely to be over an N atom, but confined by three neighbor B atoms (forming a triangle ring). In general, chemisorption of an oxygen atom will stretch the B-N bond, and under certain conditions may even break the B-N bond. Depending on the initial location of the first chemisorbed O atom, subsequent oxidation tends to form an O domain or O chain on the h-BN sheet. The latter may lead to a synthetic strategy for the unzipping of the h-BN sheet along a zigzag direction. A better understanding of the oxidation of h-BN sheet has important implications for tailoring the properties of the h-BN sheet for applications.  相似文献   

8.
采用浸渍法制备了系列不同质量比的MgO/h-BN复合载体负载的Ru基氨合成催化剂,采用X射线衍射、N2低温物理吸附、X射线荧光、扫描电镜、透射电镜、程序升温分析等手段对催化剂进行了详细的表征,并在固定床反应器上考察了它们在氨合成反应中的催化性能.结果表明,MgO/h-BN复合载体中h-BN含量对催化剂活性的影响较大,Ba-Ru[1:1](摩尔比)/MgO/h-BN[8:2](质量比),Ba-Ru[1:1]/MgO/h-BN[6:4]和Ba-Ru[1:1]/MgO/h-BN[5:5]催化剂上氨合成活性均高于Ba-Ru/MgO催化剂.在425°C,5.0MPa,N2/H2=1/3和5000h?1条件下,Ba-Ru[1:1]/MgO/h-BN[8:2]表现出最优催化活性,达506.9ml/(gcat·h).这可归因于MgO/h-BN复合载体上存在较高数量的碱性位,特别是弱碱性位和中等强度碱性位,而这些碱性位可能是由MgO和h-BN之间的相互作用造成.  相似文献   

9.
A novel polymorph of boron nitride (BN) with a body-centered tetragonal structure (bct-BN) has been predicted using first-principles calculations. The structural, vibrational, and mechanical calculations indicated that bct-BN is mechanically stable at zero pressure. When pressure is above 6 GPa, bct-BN becomes energetically more stable than h-BN. The bct-BN appears to be an intermediate phase between h-BN and w-BN due to a low energy barrier from h-BN to w-BN via bct-BN. Our results also indicated that the structure of unknown E-BN phase might be bct-BN.  相似文献   

10.
Zhong  Si-Ying  Wu  Shao-Yi  Yu  Xing-Yuan  Shen  Gao-Qiang  Yan  Li  Xu  Kai-Lai 《Catalysis Surveys from Asia》2022,26(2):69-79
Catalysis Surveys from Asia - The adsorption properties for some gas molecules (H2, N2, CO, NO and CO2) on pristine and transition metal-doped h-BN monolayer are investigated by using density...  相似文献   

11.
Two boron nitride (BN) nanostructures, the bamboo-like nanotubes and nanothorns where the nanosize h-BN layers are randomly stacked looking like thorns, were synthesized selectively via thermal chemical vapor deposition of B/B(2)O(3) under the NH(3) flow at 1200 degrees C. Electron energy-loss spectroscopy reveals the N-rich h-BN layers with a ratio of B/N = 0.75-0.85. Angle-resolved X-ray absorption near edge structure of these two N-rich nanostructures has been compared with that of h-BN microcrystals. The pi transition in the N K-edge shifts to the lower energy by 0.8-1.0 eV from that of h-BN microcrystals, and the second-order signals of N 1s electrons become significant. We suggest that the N enrichment would decrease the band gap of nanostructures from that of h-BN microcrystals. The Raman spectrum shows the peak broadening due to the defects of N-rich h-BN layers.  相似文献   

12.
Results of the study of structural and electronic properties of the 8-ZGNR/h-BN(001) heterostructure by the pseudopotential method using plane waves within density functional theory are presented. Within one approximation the features of the spin state at the Fermi level are studied along with the role of the edge and substrate effects in the opening of the energy gap in the 8-ZGNR/h-BN(001) heterostructure in both ferromagnetic and antiferromagnetic orderings. The effect of a substrate made of hexagonal boron nitride was found for the first time. It consists in the opening of the energy gap in the π electron spectrum of the 8-ZGNR/h-BN(001) heterostructure for the ferromagnetic spin ordering. It is shown that the gap was 30 meV. Contributions of the edge effects of the graphene nanoribbon and the substrate to the energy gap formation are differentiated for the first time. It is found that in the 8-ZGNR/h-BN(001) heterostructure the dominant role in the opening of the energy gap at the Fermi level is played by the edge effects. However, when the nanoribbon width decreases, e.g., to six dimmers the substrate role in the gap opening increases and amounts to 45%. Local magnetic moments of carbon atoms are estimated. It is shown that small magnetic moments are induced on boron and nitrogen atoms at the interface.  相似文献   

13.

Hexagonal boron nitride (h-BN) was neutron damaged at an integral flux of 2.40 × 1012 n cm−2 s−1 for 1, 2, 3 and 4 h. The h-BN samples undergo a transition from sp2 to sp3 hybridization as a consequence of the neutron induced damage with the formation of cubic boron nitride (c-BN) spots, as suggested both by FT–IR and Raman spectroscopy. In addition to c-BN, also a certain degree of amorphization is achieved by h-BN already at the lowest neutron fluence of 8.64 × 1015 n cm−2 as clearly evidenced by Raman spectroscopy. The Wigner or stored energy to the radiation-damaged h-BN samples was studied by DSC and also in this case there was a clear evidence that the neutron damage was partly irreversible and insensitive to the thermal annealing up to 630 °C. Electron spin resonance (ESR) was employed to further study the structural defects induced by the neutron bombardment of h-BN. Two kinds of paramagnetic defective structures centered on 11B atoms were identified.

  相似文献   

14.
《中国化学快报》2020,31(7):1936-1940
The low cost and facile scalable exfoliation route for two-dimensional hexagonal boron nitride (h-BN) was still indispensable for potential applications. In this work, we presented a convenient and scalable exfoliation for few-layer BNNSs. Taking advantage of the advantages of swift heating of microwave and ultra low temperature vaporization of liquid nitrogen, bulk h-BN was high-efficiently exfoliated into few-layer BNNSs. The as-exfoliated BNNSs had a 2−6 nm thickness and approximately 7.91% yield, exhibiting scalable, facile and environment-friendly features. Furthermore, the as-exfoliated BNNSs were applied as additive in oil for reducing friction of oil. The COF of the BNNSs-based grease reduced by 20.10% compared to grease, and the antiwear performance decreased by 55.8% and 45.1% relative to grease and h-BN-based grease.  相似文献   

15.
16.
The nitrogen substitution in carbon materials is investigated theoretically using the density functional theory method. Our calculations show that nitrogen substitution decreases the hydrogen adsorption energy if hydrogen atoms are adsorbed on both nitrogen atoms and the neighboring carbon atoms. On the contrary, the hydrogen adsorption energy can be increased if hydrogen atoms are adsorbed only on the neighboring carbon atoms. The reason can be explained by the electronic structures analysis of N-substituted graphene sheets. Nitrogen substitution reduces the pi electron conjugation and increases the HOMO energy of a graphene sheet, and the nitrogen atom is not stable due to its 3-valent character. This raises an interesting research topic on the optimization of the N-substitution degree, and is important to many applications such as hydrogen storage and the tokamaks device. The electronic structure studies also explain well why nitrogen substitution increases the capacitance but decreases the electron conductivity of carbon electrodes as was experimentally observed in our experiments on the supercapacitor.  相似文献   

17.
The 3D periodic graphene/h-BN(G/BN) heterostuctures were studied. The stacking forms between the graphene and h-BN layers were discussed. The varieties of the geometric and electronic configurations at the interface between graphene and h-BN layers were also reported. The metal-semiconductor transform of the G/BN material can be achieved by adjusting the stacking form of the h-BN layers or changing the proportion of graphene layers in the unit cell. An electrostatic potential well was found at the interface. Due to the potential well and the only dispersion correlation at the interface, the dielectric constant εzz in vertical direction was independent on the variety of the thickness or the proportion of the compositions in an unit cell.  相似文献   

18.
Adsorption of the HCN molecule is very important in environment and industrial applications. The BeONT may be good candidate for HCN capture because of large surface. Unfortunately, BeONT shows limited HCN detection. Therefore, we investigate the possibility of HCN adsorption on Ca and Mg-doped BeONT by density functional theory calculations. It was found that HCN adsorption on doped nanotube has relatively higher adsorption energy as compared with the perfect one. Furthermore, there exists a strong adsorption between HCN molecule and doped nanotubes, which exhibited more active interaction and larger net charge transfer than that of pristine nanotube. As well as, calculated geometrical parameters and electronic properties for studied systems indicate that the Ca-doped BeONT and Mg-doped BeONT present high sensitivity to HCN, compared with the pristine BeONT. Theoretical results reveal that the adsorption of the HCN on the doped nanotube is influenced on the electronic conductance of the doped-BeONT. Therefore, Ca and Mg-doped nanotube can be considered as promising sensor for detecting HCN molecule. According to NBO analysis, electron flow is spontaneous from doped nanotube to HCN molecule.  相似文献   

19.
Sample preparation still remains a great challenge in modern bioanalysis and the interest in new efficient solid phase extraction (SPE) materials still remains high. In this work, hexagonal boron nitride (h-BN) is introduced as a new SPE material for the isolation and enrichment of peptides. The h-BN is isoelectronic and structurally similar to graphite. It has remarkable properties including good thermal conductivity, excellent thermal and chemical stability and a better oxidation resistance than graphite. BN attracts increasing interest because of its wide range of applicability. In the present work, the great potential of h-BN, as a new SPE-material, on the enrichment, preconcentration and desalting of tryptic digest of model proteins is demonstrated. A special attention was dedicated to the efficient enrichment of hydrophilic phosphopeptides. Two elution protocols were developed for the enrichment of peptides compatible for subsequent MALDI-MS and ESI-MS analysis. In addition, the recoveries of 5 peptides and 3 phosphopeptides with wide range of pI values utilizing h-BN materials with different surface areas were investigated. 84–106% recovery rate could be achieved using h-BN materials. The results were compared with those obtained using graphite and silica C18 under the same elution conditions, and lower recoveries were obtained. In addition, h-BN was found to have a capability of protein depletion, which is requisite for the peptide profiling.  相似文献   

20.
Water-dispersible two-dimensional (2D) materials are desirable for diverse applications. Aqueous dispersions make processing safer and greener and enable evaluation of these materials on biological and environmental fronts. To evaluate the effects of 2D materials with biological systems, obtaining dispersions without additives is critical and has been a challenge. Herein, a method was developed for obtaining additive-free aqueous dispersions of 2D materials like transition metal dichalcogenides and hexagonal boron nitride (h-BN). The nanosheet dispersions were investigated through spectroscopic and microscopic methods, along with the role of size on stability. The aqueous media enabled investigations on cytocompatibility and enzymatic degradation of molybdenum disulphide (MoS2) and h-BN. Cytocompatibility with mixed glial cells was observed up to concentrations of 100 μg mL−1, suggesting their plausible usage in bioelectronics. Besides, biodegradation using human myeloperoxidase (hMPO) mediated catalysis was investigated through Raman spectroscopy and electron microscopy. The findings suggested that additive-free 2H-MoS2 and h-BN were degradable by hMPO, with 2H-phase exhibiting better resistance to degradation than the 1T-phase, while h-BN exhibited slower degradation. The findings pave a path for incorporating 2D materials in the burgeoning field of transient bioelectronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号