首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Unimolecular metastable fragmentations of dimethoxydimethylsilane, (CH(3))(2)Si(OCH(3))(2) (MW 120, 1), and dimethoxymethylsilane, CH(3)SiH(OCH(3))(2) (MW 106, 2), upon electron impact ionization have been studied by means of mass-analyzed ion kinetic energy (MIKE) spectrometry and the D-labeling technique in conjunction with thermochemistry. The results have been compared with those of the corresponding carbon analogues, 2,2-dimethoxypropane, (CH(3))(2)C(OCH(3))(2) (MW 104, 3) and 1,1-dimethoxyethane, CH(3)CH(OCH(3))(2) (MW 90, 4). In analogy with the cases of 3 and 4, both molecular ions from 1 and 2 are formed at very low abundance at 70 eV, and begin to decompose by the expulsion of the substituents (H, CH(3) or OCH(3)) on the central silicon atom. These decompositions are followed by the loss of a formaldehyde molecule (CH(2)O), as commonly observed in the mass spectra of methoxysilanes. Further, an ethylene (C(2)H(4)) or a dimethyl ether (CH(3)OCH(3)) molecule loss is observed in the fragmentation of some intermediate ions generated from 1(+)* and 2(+)*, but the mechanisms are different than those in the cases of 3 and 4. Some of these fragmentations are also different than those reported previously. The relative abundance of the ions in many MIKE spectra is explained by the extension of the Stevenson-Audier rule. The reaction, which is in contrast to the rule, however, is rationalized by the energy of the transition state for the reaction, estimated by semi-empirical molecular orbital calculation. The peak at m/z 59 from 2(+)* consists only of CH(3)OSi(+) ion, whereas the peak from 1(+)* consists of two different ions, CH(3)OSi(+) and (CH(3))(2)Si(+)H. The ions CH(3)OSi(+) from 1(+)* and 2(+)* are generated by at least two and three separate routes respectively.  相似文献   

2.
The hydrothermal syntheses of a family of new alkali-metal/ammonium vanadium(V) methylphosphonates, M(VO(2))(3)(PO(3)CH(3))(2) (M = K, NH(4), Rb, Tl), are described. The crystal structures of K(VO(2))(3)(PO(3)CH(3))(2) and NH(4)(VO(2))(3)(PO(3)CH(3))(2) have been determined from single-crystal X-ray data. Crystal data: K(VO(2))(3)(PO(3)CH(3))(2), M(r) = 475.93, trigonal, R32 (No. 155), a = 7.139(3) ?, c = 19.109(5) ?, Z = 3; NH(4)(VO(2))(3)(PO(3)CH(3))(2), M(r) = 454.87, trigonal, R32 (No. 155), a = 7.150(3) ?, c = 19.459(5) ?, Z = 3. These isostructural, noncentrosymmetric phases are built up from hexagonal tungsten oxide (HTO) like sheets of vertex-sharing VO(6) octahedra, capped on both sides of the V/O sheets by PCH(3) entities (as [PO(3)CH(3)](2-) methylphosphonate groups). In both phases, the vanadium octahedra display a distinctive two short + two intermediate + two long V-O bond distance distribution within the VO(6) unit. Interlayer potassium or ammonium cations provide charge balance for the anionic (VO(2))(3)(PO(3)CH(3))(2) sheets. Powder X-ray, TGA, IR, and Raman data for these phases are reported and discussed. The structures of K(VO(2))(3)(PO(3)CH(3))(2) and NH(4)(VO(2))(3)(PO(3)CH(3))(2) are compared and contrasted with related layered phases based on the HTO motif.  相似文献   

3.
The synthesis and the crystal and molecular structure of N(CH(2)CH(2)NMe)(3)P=CH(2) is reported. The P-N(ax) distance is rather long in N(CH(2)CH(2)NMe)(3)P=CH(2). The ylide N(CH(2)CH(2)NMe)(3)P=CH(2) proved to be a stronger proton acceptor than proazaphosphatrane N(CH(2)CH(2)NMe)(3)P, since it was shown to deprotonate N(CH(2)CH(2)NMe)(3)PH(+). The extremely strong basicity of the ylide is in accordance with its low ionization energy (6.3 eV), which is the lowest in the presently investigated series N(CH(2)CH(2)NMe)(3)P=E (E: CH(2), NH, lone pair, O and S), and to the best of our knowledge it is the smallest value observed for a non-conjugated phosphorus ylide. Computations reveal the existence of two bond strech isomers, and the stabilization of the phosphorus centered cation by electron donation from the equatorial and the axial nitrogens. Similar stabilizing effects operate in the case of protonation of E. A fine balance of these different interactions determines the P-N(ax) distance, which is thus very sensitive to the level of the theory applied. According to the quantum mechanical calculations, methyl substitution at the equatorial nitrogens flattens the pyramidality of this atom, increasing its electron donor capability. As a consequence, the PN(ax) distance in the short-transannular bonded protonated systems and the radical cations is longer by about 0.5 A in the N(eq)(Me) than in the N(eq)(H) systems. Accordingly, isodesmic reaction energies show that a stabilization of about 25 and 10 kcal/mol is attributable to the formation of the transannular bond in case of N(eq)(H) and the experimentally realizable N(eq)(Me) species, respectively.  相似文献   

4.
The unimolecular metastable decompositions of trimethylsilylacetic acid, (CH(3))(3)SiCH(2)COOH (1), and its methyl ester, (CH(3))(3)SiCH(2)COOCH(3) (2), were investigated by mass-analyzed ion kinetic energy (MIKE) spectrometry in conjunction with thermochemical data. The abundance of the molecular ions of both compounds, generated by electron ionization, is extremely low. However, the abundance of the ions generated by the loss of (.)CH(3) and observed at m/z 117 and 131 is moderate. These fragment ions further decompose to form the most abundant m/z 75 and 89 ions, respectively, by the loss of CH(2)CO through a (CH(3))(2)Si group migration. The loss of CH(2)CO is also observed to occur from 2(+.) and its fragment ion at m/z 115 generated by the loss of (.)OCH(3). The former reaction is proposed to occur via an ion-radical complex.  相似文献   

5.
The new tin(IV) species (CH(3))(2)SnCl(OTeF(5)) was prepared via either the solvolysis of (CH(3))(3)SnCl in HOTeF(5) or the reaction of (CH(3))(3)SnCl with ClOTeF(5). It was characterized by NMR and vibrational spectroscopy, mass spectrometry, and single crystal X-ray diffraction. (CH(3))(2)SnCl(OTeF(5)) crystallizes in the monoclinic space group P2(1)/n (a = 5.8204(8) A, b =10.782(1) A, c =15.493(2) A, beta = 91.958(2) degrees, V = 971.7(2) A(3), Z = 4). NMR spectroscopy of (CH(3))(3)SnX, prepared from excess Sn(CH(3))(4) and HX (X = OTeF(5) or N(SO(2)CF(3))(2)), revealed a tetracoordinate tin environment using (CH(3))(3)SnX as a neat liquid or in dichloromethane-d(2) (CD(2)Cl(2)) solutions. In acetone-d(6) and acetonitrile-d(3) (CD(3)CN) solutions, the tin atom in (CH(3))(3)SnOTeF(5) was found to extend its coordination number to five by adding one solvent molecule. In the strong donor solvent DMSO, the Sn-OTeF(5) bond is broken and the (CH(3))(3)Sn(O=S(CH(3))(2))(2)(+) cation and the OTeF(5)(-) anion are formed. (CH(3))(3)SnOTeF(5) and (CH(3))(3)SnN(SO(2)CF(3))(2) react differently with water. While the Te-F bonds in the OTeF(5) group of (CH(3))(3)SnOTeF(5) undergo complete hydrolysis that results in the formation of [(CH(3))(3)Sn(H(2)O)(2)](2)SiF(6), (CH(3))(3)SnN(SO(2)CF(3))(2) forms the stable hydrate salt [(CH(3))(3)Sn(H(2)O)(2)][N(SO(2)CF(3))(2)]. This salt crystallizes in the monoclinic space group P2(1)/c (a = 7.3072(1) A, b =13.4649(2) A, c =16.821(2) A, beta = 98.705(1) degrees, V = 1636.00(3) A(3), Z = 4) and was also characterized by NMR and vibrational spectroscopy.  相似文献   

6.
The formation of complexes with different ligands in the interlayer space of montmorillonite saturated in Na(+), Mg(2+), Ca(2+), Co(2+), Cu(2+), Ni(2+), Fe(3+), and Cr(3+) was studied. Acetone, acetonitrile, dimethyl sulfoxide, and trimethylphosphate were used as ligands. The nature of the complexes was studied by means of X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, microcalorimetry, and ab initio quantum mechanical methods. In all cases, the organic ligands penetrate into the interlayer space at room temperature, forming complexes stable in vacuum with the interlayer cations. The ligand-cation ratio depends on the valence of the saturating cation. The cation-ligand interaction in these complexes has an ion-dipole electrostatic nature. The complexes are formed by the direct interaction of the oxygen or nitrogen atom of ligand and the interlayer cation. Using the quantum mechanical approach, allow us to determine the disposition of the ligand in these complexes. In all cases, only one layer of ligands is present in the stable complexes. Copyright 2000 Academic Press.  相似文献   

7.
Pulse radiolysis techniques were used to measure the gas phase UV absorption spectra of the title peroxy radicals over the range 215–340 nm. By scaling to σ(CH3O2)240 nm = (4.24 ± 0.27) × 10?18, the following absorption cross sections were determined: σ(HO2)240 nm = 1.29 ± 0.16, σ(C2H5O2)240 nm = 4.71 ± 0.45, σ(CH3C(O)CH2O2)240 nm = 2.03 ± 0.22, σ(CH3C(O)CH2O2)230 nm = 2.94 ± 0.29, and σ(CH3C(O)CH2O2)310 nm = 1.31 ± 0.15 (base e, units of 10?18 cm2 molecule?1). To support the UV measurements, FTIR‐smog chamber techniques were employed to investigate the reaction of F and Cl atoms with acetone. The F atom reaction proceeds via two channels: the major channel (92% ± 3%) gives CH3C(O)CH2 radicals and HF, while the minor channel (8% ± 1%) gives CH3 radicals and CH3C(O)F. The majority (>97%) of the Cl atom reaction proceeds via H atom abstraction to give CH3C(O)CH2 radicals. The results are discussed with respect to the literature data concerning the UV absorption spectra of CH3C(O)CH2O2 and other peroxy radicals. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 283–291, 2002  相似文献   

8.
A novel species, diaceto disulfide (CH3C(O)OSSOC(O)CH3), has been generated through the heterogeneous reaction between sulfur monochloride (S2Cl2) and silver acetate (AgOC(O)CH3). Photoelectron spectroscopy (PES) and theoretical calculations are performed to investigate its electronic and geometric structures. This molecule exhibits gauche conformation with both C=O groups syn to the S-O bond. The dihedral angle around the S-S bond is calculated to be -93.1 degrees at the B3LYP/6-311++G(3df,3pd) level. After structural optimizations of the most stable conformer, a theoretical study involving the calculation of the ionization energies using orbital valence Green's functional (OVGF) was performed. The ionization energies of different bands in the photoelectron spectrum are in good agreement with the calculated values from the OVGF method. The first vertical ionization energy of CH3C(O)OSSOC(O)CH3 is determined to be 9.83 eV by photoelectron spectroscopy, which corresponds to the ionization of an electron mainly localized on the sulfur 3p lone pair molecular orbital.  相似文献   

9.
By reaction of NBu(4)[Au(C(6)Cl(5))(2)] with TlPF(6) in acetone the complex [Au(2)Tl(2)(C(6)Cl(5))(4)].(CH(3))(2)C=O is obtained, which shows a butterfly type arrangement of metals through short Au(I)-Tl(I) and Tl(I)-Tl(I) interactions. The last one is likely to be responsible for its luminescence behavior.  相似文献   

10.
11.
12.
In N,N′‐di‐tert‐butyl‐N′′,N′′‐dimethylphosphoric triamide, C10H26N3OP, (I), and N,N′,N′′,N′′′‐tetra‐tert‐butoxybis(phosphonic diamide), C16H40N4O3P2, (II), the extended structures are mediated by P(O)...(H—N)2 interactions. The asymmetric unit of (I) consists of six independent molecules which aggregate through P(O)...(H—N)2 hydrogen bonds, giving R21(6) loops and forming two independent chains parallel to the a axis. Of the 12 independent tert‐butyl groups, five are disordered over two different positions with occupancies ranging from to . In the structure of (II), the asymmetric unit contains one molecule. P(O)...(H—N)2 hydrogen bonds give S(6) and R22(8) rings, and the molecules form extended chains parallel to the c axis. The structures of (I) and (II), along with similar structures having (N)P(O)(NH)2 and (NH)2P(O)(O)P(O)(NH)2 skeletons extracted from the Cambridge Structural Database, are used to compare hydrogen‐bond patterns in these families of phosphoramidates. The strengths of P(O)[...H—N]x (x = 1, 2 or 3) hydrogen bonds are also analysed, using these compounds and previously reported structures with (N)2P(O)(NH) and P(O)(NH)3 fragments.  相似文献   

13.
Irradiation at 239 ± 20 nm of a p-H(2) matrix containing methoxysulfinyl chloride, CH(3)OS(O)Cl, at 3.2 K with filtered light from a medium-pressure mercury lamp produced infrared (IR) absorption lines at 3028.4 (attributable to ν(1), CH(2) antisymmetric stretching), 2999.5 (ν(2), CH(3) antisymmetric stretching), 2950.4 (ν(3), CH(3) symmetric stretching), 1465.2 (ν(4), CH(2) scissoring), 1452.0 (ν(5), CH(3) deformation), 1417.8 (ν(6), CH(3) umbrella), 1165.2 (ν(7), CH(3) wagging), 1152.1 (ν(8), S=O stretching mixed with CH(3) rocking), 1147.8 (ν(9), S=O stretching mixed with CH(3) wagging), 989.7 (ν(10), C-O stretching), and 714.5 cm(-1) (ν(11), S-O stretching) modes of syn-CH(3)OSO. When CD(3)OS(O)Cl in a p-H(2) matrix was used, lines at 2275.9 (ν(1)), 2251.9 (ν(2)), 2083.3 (ν(3)), 1070.3 (ν(4)), 1056.0 (ν(5)), 1085.5 (ν(6)), 1159.7 (ν(7)), 920.1 (ν(8)), 889.0 (ν(9)), 976.9 (ν(10)), and 688.9 (ν(11)) cm(-1) appeared and are assigned to syn-CD(3)OSO; the mode numbers correspond to those used for syn-CH(3)OSO. The assignments are based on the photolytic behavior and a comparison of observed vibrational wavenumbers, infrared intensities, and deuterium isotopic shifts with those predicted with the B3P86∕aug-cc-pVTZ method. Our results extend the previously reported four transient IR absorption bands of gaseous syn-CH(3)OSO near 2991, 2956, 1152, and 994 cm(-1) to 11 lines, including those associated with C-O, O-S, and S=O stretching modes. Vibrational wavenumbers of syn-CD(3)OSO are new. These results demonstrate the advantage of a diminished cage effect of solid p-H(2) such that the Cl atom, produced via UV photodissociation of CH(3)OS(O)Cl in situ, might escape from the original cage to yield isolated CH(3)OSO radicals.  相似文献   

14.
Aryl bromides react with (H(2)NCH(2)CH(2))(3)N in a reaction catalyzed by Pd(2)(dba)(3) in the presence of BINAP and NaO-t-Bu to give the arylated derivatives (ArylNHCH(2)CH(2))(3)N [Aryl = C(6)H(5) (1a), 4-FC(6)H(4) (1b), 4-t-BuC(6)H(4) (1c), 3,5-Me(2)C(6)H(3) (1d), 3,5-Ph(2)C(6)H(3) (1e), 3,5-(4-t-BuC(6)H(4))(2)C(6)H(3) (1f), 2-MeC(6)H(4) (1g), 2,4,6-Me(3)C(6)H(2) (1h)]. Reactions between (ArNHCH(2)CH(2))(3)N (Ar = C(6)H(5), 4-FC(6)H(4), 3,5-Me(2)C(6)H(3), and 3,5-Ph(2)C(6)H(3)) and Mo(NMe(2))(4) in toluene at 70 degrees C lead to [(ArNHCH(2)CH(2))(3)N]Mo(NMe(2)) complexes in yields ranging from 64 to 96%. Dimethylamido species (Ar = 4-FC(6)H(4), 3,5-Me(2)C(6)H(3)) could be converted into paramagnetic [(ArNHCH(2)CH(2))(3)N]MoCl species by treating them with 2,6-lutidinium chloride in tetrahydrofuran (THF). The "direct reaction" between 1a-f and MoCl(4)(THF)(2) in THF followed by 3 equiv of MeMgCl yielded [(ArNHCH(2)CH(2))(3)N]MoCl species (3a-f) in high yield. If 4 equiv of LiMe instead of MeMgCl are employed in the direct reaction, then [(ArNHCH(2)CH(2))(3)N]MoMe species are formed. Tungsten species, [(ArNHCH(2)CH(2))(3)N]WCl, could be prepared by analogous "direct" methods. Cyclic voltammetric studies reveal that MoCl complexes become more difficult to reduce as the electron donating ability of the [ArylNCH(2)CH(2))(3)N]3- ligand increases, and the reductions become less reversible, consistent with ready loss of chloride from ([(ArNHCH(2)CH(2))(3)N]MoCl)(-). Tungsten complexes are more difficult to reduce, and reductions are irreversible on the CV time scale.  相似文献   

15.
Carbonyl diazide (1), OC(N(3))(2), is prepared by reaction of triphosgene and tetra-n-butylammonium azide in a solution of diethyl ether or dimethyl ether. The advantage of this synthetic method, relative to other procedures, is that the use of triphosgene, OC(OCCl(3))(2), mitigates the need to use highly poisonous reagents such as phosgene, OCCl(2), or chlorofluorocarbonyl, OC(Cl)F. The identity and purity of OC(N(3))(2) are established by gas-phase IR spectroscopy, which reveals the presence of both syn-syn and anti-syn conformers. Computed anharmonic vibrational frequencies and infrared intensities of carbonyl diazide (1) display excellent agreement with experiment, and reveal the presence of strong Fermi resonances.  相似文献   

16.
The branching of the title reaction into several product channels has been investigated quantitatively by laser infrared kinetic spectroscopy for CH(4) and CD(4). It is found that OH (OD) is produced in 67 +/- 5% (60 +/- 5%) yield compared to the initial O((1)D) concentration. H (D) product is produced in 30 +/- 10%(35 +/- 10%). H(2)CO is produced in 5% yield in the CH(4) system (it was not possible to measure the CD(2)O yield in the CD(4) case). D(2)O is produced in 8% yield in the CD(4) system (it was not feasible to measure the H(2)O yield). The ratio of the overall rate constant of the CD(4) reaction to the overall rate constant of the O((1)D) + N(2)O reaction was determined to be 1.2(5) +/- 0.1. A measurement of the reaction of O((1)D) with NO(2) gave 1.3 x 10(-10) cm(3) molecule(-1) s(-1) relative to the literature values for the rate constants of O((1)D) with H(2) and CH(4). Hot atom effects in O((1)D) reactions were observed.  相似文献   

17.
Nucleophilic substitution reactions of the monosubstituted anions [B12H11X]2–, where X = OC(O)CH3, OH, SCN, and I, with pentanoic acid were studied. The obtained compounds were shown to contain the [B12H10X{OC(O)(CH2)3CH3}]2– anions.  相似文献   

18.
A titanium oxide molecular cluster prepared by hydrolysis of titanium tetraethoxide in the presence of methacrylic acid, can be characterized by electrospray time of flight mass spectrometry (ESMS-TOF). The chemistry of such systems is not well known and ESMS is a powerful technique for studying the reactions of clusters in solution. The fingerprint of the cluster fragmentation suggests formation of Ti(x)O(y) core fragments that represent commonly observed structural constructs in bulk titanium oxide metallates. The fragmentation steps provide insight into the hydrolytic conversion of this molecular sol gel intermediate into bulk TiO(2). While MS has been applied to the study of metal alkoxide hydrolysis mechanisms, mass spectra of isolated individual titanium oxide clusters have not previously been reported.  相似文献   

19.
20.
The infrared spectra of CH3Cl + H2O isolated in solid neon at low temperature have been investigated. High concentration studies of water (0.01%-4%) and subsequent annealing lead to the formation of the ternary CH3Cl:(H2O)2 complex. Detailed vibrational assignments were made on the observed spectra of water and deuterated water engaged in the complex. In parallel, structural, energetic, and vibrational properties of the complex have been studied at the second-order M?ller-Plesset perturbation theory using several basis sets. Anaharmonic correction to the vibrational frequencies has been done with the standard second-order perturbation approach. It was shown that the ground state of the complex has a cyclic form for which the nonadditive three-body contribution was found to be around 10% of the interaction energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号