首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Reactivity of isobutane on zeolites: a first principles study   总被引:1,自引:0,他引:1  
In this work, ab initio and density functional theory methods are used to study isobutane protolytic cracking, primary hydrogen exchange, tertiary hydrogen exchange, and dehydrogenation reactions catalyzed by zeolites. The reactants, products, and transition-state structures are optimized at the B3LYP/6-31G* level, and the final energies are calculated using the CBS-QB3 composite energy method. The computed activation barriers are 52.3 kcal/mol for cracking, 29.4 kcal/mol for primary hydrogen exchange, 29.9 kcal/mol for tertiary hydrogen exchange, and 59.4 kcal/mol for dehydrogenation. The zeolite acidity effects on the reaction barriers are also investigated by changing the cluster terminal Si-H bond lengths. The analytical expressions between activation barriers and zeolite deprotonation energies for each reaction are proposed so that accurate activation barriers can be obtained when using different zeolites as catalysts.  相似文献   

2.
In this work, quantum chemical methods were used to study propane conversion reactions on zeolites; these reactions included protolytic cracking, primary hydrogen exchange, secondary hydrogen exchange, and dehydrogenation reactions. The reactants, products, and transition-state structures were optimized at the B3LYP/6-31G level and the energies were calculated with CBS-QB3, a complete basis set composite energy method. The computed activation barriers were 62.1 and 62.6 kcal/mol for protolytic cracking through two different transition states, 30.4 kcal/mol for primary hydrogen exchange, 29.8 kcal/mol for secondary hydrogen exchange, and 76.7 kcal/mol for dehydrogenation reactions. The effects of basis set for the geometry optimization and zeolite acidity on the reaction barriers were also investigated. Adding extra polarization and diffuse functions for the geometry optimization did not affect the activation barriers obtained with the composite energy method. The largest difference in calculated activation barriers is within 1 kcal/mol. Reaction activation barriers do change as zeolite acidity changes, however. Linear relationships were found between activation barriers and zeolite deprotonation energies. Analytical expressions for each reaction were proposed so that accurate activation barriers can be obtained when using different zeolites as catalysts, as long as the deprotonation energies are first acquired.  相似文献   

3.
F原子与瞬态自由基CH_2SH反应的理论研究   总被引:1,自引:0,他引:1  
胡正发  冯霞  王振亚  周士康 《化学学报》2002,60(10):1760-1767
用量子化学从头算和密度泛函理论(DFT)对F原子与自由基CH_2SH在势能面上 的反应进行了研究。在B3LYP/6-311G水平上计算出了各物种的优化构型、振动频率 和零点振动能(ZPVE);各物种的总能量由B3LYP/6-311 + G(2df, pd)//B3LYP/6- 311G计算,另外对反应物和产物还计算了其G3能量。结果表明:首先F通过与C或S 结合的两种途径与CH_2SH相配位,再通过H(4)原子转移形成甲基,然后甲基再旋 转,甲基中H(4)原子最终与F结合,反应产物为HF和CH_2S。反应为放热反应,分 别为ΔH_r = -370.7 kJ/mol (DFT)和-396.94 kJ/mol (G3)。此外依据计算出的反 应热,可得自由基·CH_2SH的生成热Δ_fH°_(298.15) = 146.44 kJ/mol (DFT), 而Δ_fH°_0 = 167.36 kJ/mol (G3)。它们与以前的实验和理论值是一致的。  相似文献   

4.
左士颖  周丹红  任珏  王凤娇 《催化学报》2012,33(8):1367-1373
基于76T簇模型,采用量子力学和分子力学联合的ONIOM2(B3LYP/6-31G(d,p):UFF)方法研究了H-ZSM-5分子筛上环己烯芳构化反应历程.结果表明,环己烯首先吸附在分子筛酸性位上,与酸性质子共同脱除一个H2分子后,在分子筛骨架氧上生成烷氧配合物中间体;然后再脱质子得到环己二烯,同时酸性位复原;再经历脱氢和脱质子历程,最后得到产物苯,并吸附在复原的分子筛酸性位上.计算得到脱氢的活化能依次为279.64和260.21kJ/mol,脱质子的活化能依次为74.64和59.14kJ/mol.所有脱氢反应都是吸热过程,生成表面烷氧活性中间体,随后的脱质子反应能垒较低,而且是放热过程.此外,比较了环己烯在分子筛酸性位上的三个竞争反应,即脱氢、质子化和氢交换反应的活化能垒,证明环己烯优先发生脱氢反应.  相似文献   

5.
周立新 《中国化学》2000,18(6):808-814
Results of ab initio self-consistent-field (SCF) and density functional theory (DFT) calculations of the gas-phase structure,acidity (free energy of deprotonation,G0) and aro-maticity of tetraselenosquaric acid (3,4-diselenyl-3-cy-dobutene-1,2-diselenone,H2C4Se4) are reported.The global minimum found on the potential energy surface of tetraselenosquaric acid presents a planar conformation.The ZZ iso-mer was found to have the lowest energy among the three planar conformers and the ZZ and ZE isomers are very dose in energy.The optimized geometric parameters exhibit a bond length equalization relative to reference compounds,cyclobu-tanediselenone,and cydobutenediselenol.The computed aromatic stabilization energy (ASE) by homodesmotic reaction is -77.4 (MP2(fu)/6 - 311 G //RHF/6 - 311 G) and - 54.8 kJ/mol (B3LYP/6 - 311 G //B3LYP/6 -311 G).The aromaticity of tetraselenosquaric add is indicated by the calculated diamagnetic susceptibility exaltation (A) - 19.13 (CSGT(IGAEM) - RHF/6 - 311 G// RHF/6-  相似文献   

6.
在密度泛函和从头算理论水平下计算了单重态的NC2S+离子的结构、能量、光谱以及稳定性. 在B3LYP/6-311G(d)水平下, 得到8个异构体, 它们由15个过渡态相连接. 在CCSD(T)/6-311+G(2df)//QCISD/6-311G(d)+ZPVE水平下, 得到能量最低的异构体是直线型的具有1Σ电子态的NCCS+(1)(0.0 kJ/mol), 其次是直线型的异构体CNCS+(2)(54.8 kJ/mol). 两个低能量的异构体1和2及另外一个高能量的直线型异构体CCNS+(3)(323.8 kJ/mol)都具有相当大的动力学稳定性, 这三个异构体在具备一定条件的实验室和星际条件下是可以进行观测的. 分析了这3个异构体的成键性质.  相似文献   

7.
在RHF/6-311G水平优化得到3,4-二硒方酸(3,4-二氢硒基-3-环丁烯-1,2-二酮)3 种平面构象异构体的平衡几何构型。进一步用MP2(full)/6-311G//RHF//6-311G方法计算单点能量,发现ZZ型异构体是能量最低构象,且ZZ和ZE型能量非常接近。用优化的最稳定构象ZZ型异构体在RHF/6-311G//RHF/6-311G、RHF/6-311+ G//RHF/6-311+ G、MP2(full)/6-311+ G//RHF/6-311+ G 和B3LYP/6-311+ G//B3LYP/6-311+ G水平计算其气相酸性(ΔG°)和同键反应芳香性稳定化能(HASE)。用基团加和法(group increm ent ap-proach ) 在 RHF/6-311 + G//RHF/6-311 + G 和 B3LYP/6-311 + G//B3LYP/6-311+ G水平计算其磁化率增量(Λ)。计算结果指出标题化合物的同键反应芳香性稳定化能和磁化率增量均为负值,表明它具有芳香性,实现了标题化合物芳香性的几何、能量和磁性的判定。  相似文献   

8.
The geometries and electronic properties of substrates, transition structures (TS), and product radicals in modeled elementary propagation reactions were studied for the styrene–acrylonitrile monomer system by use of quantum‐mechanical calculations: (DFT/B3‐LYP/6–31G(d), ROMP2/6–311+G(3df,2p)//DFT/B3‐LYP/6–31G(d), and DFT/B3‐LYP/6–311+G(3df,2p)//DFT/B3‐LYP/6–31G(d)) and for some parameters, the high‐level composite method G3 (Gaussian‐3, G3/MP2). Activation enthalpies (ΔHact) and reaction enthalpies (ΔHr) for modeled propagation reactions at 298.15 K were evaluated. The enthalpy of activation energy (ΔHact, kJ/mol) for the investigated elementary reactions rises for the B3‐LYP calculation in the following order: (CH3A?+S) < (CH3A?+A) < (CH3S?+A) < (CH3S?+S). For three propagation reactions, (CH3A?+A), (CH3A?+S), and (CH3S?+A), correlation between reaction enthalpy and enthalpy of activation suggests weak or negligible polar effects reflecting the Evans–Polanyi relation. However, from the electron affinities and ionization energies values data, it is not excluded that at least for [CH3A?+S[b]] and [CH3S?+A[b]] reactions, nucleophilic and electrophilic polar effects, respectively, can also be expected. The dependencies between TS geometries, electronic parameters, and enthalpic effects suggest the presence of a steric factor in all TS, including its exceptionally high contribution to the activation enthalpy for the CH3S?+S addition. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1827–1844, 2005  相似文献   

9.
Recently, we proposed the X1 method which combines the B3LYP/6‐311+G(3df,2p)//B3LYP/6‐311+G(d,p) method with a neural network correction for an accurate yet efficient prediction of heats of formation (Wu and Xu, J Chem Phys 2007, 127, 214105). In this contribution, we discuss in detail how to set up the X1 neural network. We give examples, showing how to apply the X1 method and how the applicability of X1 can be extended. The overall mean absolute deviation of the X1 method from experiment for the 488 heats of formation is 1.52 kcal/mol compared with 9.44 kcal/mol for the original B3LYP results. © 2008 Wiley Periodicals, Inc. J Comput Chem 2009  相似文献   

10.
The mechanism of a cycloaddition reaction between singlet alkylidenestannylene and ethylene has been investigated with MP2/3-21 G^* and B3LYP/3-21 G* methods, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. Energies for the involved conformations were calculated by CCSD(T)//MP2/3-2 IG^* and CCSD(T)//B3LYP/3-21G^* methods, respectively. The results show that the dominant reaction pathway of the cycloaddition is that an intermediate (INT) is firstly formed between the two reactants through a barrier-free exothermic reaction of 39.7 kJ/mol, and the intermediate then isomerizes to a four-membered ring product (P2.1) via a transition state TS2.1 with a barrier of 66.8 kJ/mol.  相似文献   

11.
卢秀慧  徐曰华  于海彬  林璜 《中国化学》2005,24(10):1339-1342
The mechanism of a cycloaddition reaction between singlet dichloromethylene germylene and ethylene has been investigated with B3LYP/6-31G* method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. Energies for the involved conformations were calculated by CCSD(T)//B3LYP/6-31G* method. On the basis of the surface energy profile obtained with CCSD(T)// B3LYP/6-31G* method for the cycloaddition reaction between singlet dichloromethylene germylene and ethylene, it can be predicted that the dominant reaction pathway is that an intermediate INT1 is firstly formed between the two reactants through a barrier-free exothermic reaction of 61.7 kJ/mol, and the intermediate INT1 then isomerizes to an active four-membered ring product P2.1 via a transition state TS2, an intermediate INT2 and a transition state TS2.1, in which energy barriers are 57.7 and 42.2 kJ/mol, respectively.  相似文献   

12.
Analyses of isodesmic reactions for singlet 7-carbenanorbornene (4S), 8-carbena-endo-tricyclo[3.2.1.0(2,4)]octane (5S), 3-carbenabicyclo[3.1.0]hexane (3S), 2-carbenanorbornene 6S, and 2-carbenabicyclooctadiene 7S at the B3LYP/6-311+G(3df, 2p)//B3LYP/6-31G level provide stabilization energies of 13.83, 13. 50, 3.00, -2.22, and -3.01 kcal/mol, respectively. The C7 carbene in 4S and the C8 carbene center in 5S are strongly bent toward the double bond and cyclopropane ring, respectively, in contrast to their related triplets, 4T and 5T and parent hydrocarbons. The geometric change for 3S compared to 3T or to parent bicyclo[3.1. 0]hexane is minimal. Comparison of the stability of 6S with 2-carbenanorbornane and the geometry of 6S with that of 6T and also with the singlet and triplet 2-carbenanorbornane suggests very modest bridging. The stabilization energy and geometry of 2-carbenabicyclooctadiene 7 resemble antihomoaromatic bicyclooctadienyl cation 9 rather than the related homoaromatic bicyclooctadienyl anion 8. The diamagnetic susceptibility exhaltations (Deltachi) of 3, 4, 5, and 7, calculated at the B3LYP/6-311+G(2d,p)//B3LYP/6-31G level, are -0.7, 22.7, 26.0, and -10.3 cgs-ppm, respectively. The singlet-triplet energy differences, DeltaE(TS), for carbenacyclohexane, carbenacyclopentane, 3, 4, 5, 6, 7, and 2-carbenabicyclo[3.2.1]oct-3-ene at the B3LYP/6-311+G(3df, 2p)//B3LYP/6-31G level are 3.4, 10.3, 8.8, 27.1, 25.9, 12.7, -4.0, and -0.9 kcal/mol, respectively.  相似文献   

13.
Energies of a series of 4-substituted 1-oxybicyclo[2.2.2]octan-1-yloxy radicals with 18 various substituents were calculated within the framework of the DFT theory at the levels UB3LYP/6-311+G(d,p)//UB3LYP/6-311+G(d,p) and UB3LYP/6-311++G(2df,p)//UB3LYP/6-311+G(d,p) and compared with similar series of the parent alcohols, their deprotonated and protonated forms calculated at the levels B3LYP/6-311+G(d,p)//B3LYP/6-311+G(d,p) and B3LYP/6-311++G(2df,p)//B3LYP/6-311+G(d,p). The two levels are of the same performance and both are sufficient for molecules of this type according to comparison with scarce experimental gas-phase acidities and basicities. The substituent effects were analyzed in terms of isodesmic equations. In addition to strong dependence on the substituent inductive effect, a slight dependence on the electronegativity of the first atom of the substituent was proven in certain cases. In all aspects, there is no qualitative difference between the effects on radicals and on similar closed shell species. Radicals behave as slightly electron deficient; the substituent effect is weaker than that on the ions but stronger than on neutral molecules.  相似文献   

14.
在RHF/6-311G**,RHF/6-311+G**和B3LYP/6-311+G**水平优化得到3,4-二硫方酸(3,4-二巯基-3-环丁烯-1,2-二酮)三种平面构象异构体的平衡几何构型.用MP2(Full)/6-311G**//RHF/6-311G**方法计算单点能量,发现ZZ型异构体是能量最低构象,且ZZ和ZE型能量非常接近.用优化的最稳定构象ZZ型异构体在RHF/6-311G**//RHF/6-311G**,RHF/6-311G**//RHF/6-311G**,MP2(Full)/6-311G**//RHF/6-311G**和B3LYP/6-311G**//B3LYP/6-311G**水平计算其气相酸性(ΔG0)和同键反应芳香性稳定化能(HASE).用基团加和法(Group Increment Approach)在RHF/6-311G**//RHF/6-311G**和B3LYP/6-311G**//B3LYP/6-311G**水平计算其磁化率增量(Λ).计算结果表明,标题化合物的同键反应芳香性稳定化能和磁化率增量均为负值,表明它具有芳香性,实现了标题化合物芳香性的几何、能量和磁性的判定.  相似文献   

15.
The molecular structure, vibrational spectrum, standard thermodynamic functions, and enthalpy of formation of free base phthalocyanine (Pc) have been studied using the density functional theory B3LYP procedure, as well as the ab initio Hartree–Fock method. Various basis sets 3‐21G, 6‐31G*, and LANL2DZ have been employed. The results obtained at various levels are discussed and compared with each other and with the available experimental data. It is shown that calculations performed at the Hartree–Fock level cannot produce a reliable geometry and related properties such as the dipole moment of Pc and similar porphyrin‐based systems. Electron correlation must be included in the calculations. The basis set has comparatively less effect on the calculated results. The results derived at the B3LYP level using the smaller 3‐21G and LANL2DZ basis sets are very close to those produced using the medium 6‐31G* basis set. The geometry of Pc obtained at the B3LYP level has D2h symmetry and the diameter of the central macrocycle is about 4 Å. The enthalpy of formation of Pc in the gas phase has been predicted to be 1518.50 kJ/mol at the B3LYP/6‐311G(2d,2p)//B3LYP/6‐31G* level via an isodesmic reaction. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   

16.
曹亮  周丹红  邢双英  李新 《催化学报》2010,31(6):645-650
 应用量子力学和分子力学联合的 ONIOM2 (B3LYP/6-31G(d,p):UFF) 方法, 采用包含分子筛孔道结构的 78T 簇模型, 对 HZSM-5 分子筛上乙烯芳构化过程中 C4 至 C6 中间体的反应历程进行了研究, 探讨了分子筛的酸催化机理和择形催化作用. 结果表明, 作为乙烯二聚产物的表面正丁基烷氧络合物 (C4) 直接与乙烯作用得到正己基烷氧络合物 (C6), 在分子筛孔穴尺寸的限制下, 很难实现碳链的折叠环化. 按照间歇反应历程, 丁基烷氧络合物先发生 C–O 键断裂, 脱质子生成 1-丁烯, 然后在酸性位上再与乙烯加成, 在分子筛表面生成 3-甲基戊基烷氧络合物. 该烷氧络合物脱除质子给分子筛, 同时环化生成甲基环戊烷, 后者再与分子筛酸性质子共同脱除氢分子, 生成不稳定的碳正离子中间体, 然后重构成环己烷正离子. 丁基烷氧络合物脱质子的活化能为 158.42 kJ/mol; 1-丁烯与乙烯加成反应的活化能为 130.71 kJ/mol; 3-甲基戊基烷氧络合物脱氢环化生成甲基环戊烷的活化能为 122.06 kJ/mol. 由于孔穴的限域作用, 五员环的甲基环戊烷是重要的中间体.  相似文献   

17.
The gas-phase acidity of D-glucopyranose was studied by means of B3LYP calculations combined with 6-31G(d,p) or 6-31+G(d,p) standard basis sets. For each anomer, deprotonation of the various primary and secondary hydroxyl groups was considered. As in solution, the anomeric hydroxyl is found to be the most acidic for both anomers, but only when the 6-31+G(d,p) basis set is used for geometry optimization. Deprotonation of the anomeric hydroxyl induces an important C(1)--O endocyclic bond elongation and subsequently promotes an energetically favored ring-opening process as attested by the very small calculated activation barriers. The results also suggest that interconversion between the various deprotonated alpha- and beta-anomers may easily occur under slightly energetic conditions. B3LYP/6-311+G(2df,2p) calculations led to the an absolute gas-phase acidity of deltaacidGo(298)(alpha-D-glucose) = 1398 kJ mol(-1). This estimate matches well the only experimental value available to date. Finally, this study again confirms that the use of diffuse functions on heavy atoms is necessary to describe anionic systems properly and to achieve good relative and absolute gas-phase acidities.  相似文献   

18.
Theoretical calculations (B3LYP/6-311+G(3df,2p)//B3LYP/6-31G) of the 1,3 migration of NR(2) transforming alpha-oxoketenimines 1 to alpha-imidoylketenes 3 and vice versa indicate that this process is a pseudo-pericyclic reaction with a low activation energy (NH(2) 97 kJ mol(-1), N(CH3)(2) 62 kJ mol(-1)). The oxoketenimines were found to be more stable (by 18-35 kJ mol(-1)) which is in line with experimental observations. The hindered amine rotation in the amide and amidine moieties adjacent to the cumulenes are important in the migration of the NR(2) group, as one of the rotation transition states is close to the 1,3 migration pathway. This gives an interesting potential energy surface with a valley-ridge inflection (VRI) between the orthogonal hindered amine rotation and 1,3 migration transition states. The imidoylketene may also undergo ring closure to an azetinone 5; however, this is metastable, and under the conditions that allow the 1,3-migration, the oxoketenimine 1 will be favored. The imine NH E/Z-interconversion of the ketenimine group takes place by inversion and has a low activation barrier ( approximately 40 kJ mol(-1)). In all the amidines examined the E/Z-interconversion of the imine function was predicted to be by rotation with a high barrier (>80 kJ mol(-1)), in contrast to all other reported imine E/Z-interconversions which are by inversion.  相似文献   

19.
Density functional theory, B3LYP/6‐31G** and B3LYP/6‐311+G(2d,p), and ab initio MP2/6‐31G** calculations have been carried out to investigate the conformers, transition states, and energy barriers of the conformational processes of oxalic acid and its anions. QCISD/6‐31G** geometrical optimization is also performed in the stable forms. Its calculated energy differences between the two most stable conformers are very near to the related observed value at 7.0 kJ/mol. It is found that the structures and relative energies of oxalic acid conformers predicted by these methods show similar results, and that the conformer L1 (C2h) with the double‐interfunctional‐groups hydrogen bonds is the most stable conformer. The magnitude of hydrogen bond energies depends on the energy differences of various optimized structures. The hydrogen bond energies will be about 32 kJ/mol for interfunctional groups, 17 kJ/mol for weak interfunctional groups, 24 kJ/mol for intra‐COOH in (COOH)2, and 60 kJ/mol for interfunctional groups in (COOH)COO−1 ion if calculated using the B3LYP/6‐311+G(2d,p) method. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 76: 541–551, 2000  相似文献   

20.
The theoretical enthalpies of propagation reactions at 0 K without zero‐point vibrational energy corrections according to terminal and penultimate models of the radical copolymerization of styrene with acrylonitrile are reported from molecular orbital calculations at the following levels of theory and basis sets: HF/6‐31G(d); B3‐LYP/6‐31G(d); B3‐LYP/6‐311G(d,p) and B3‐LYP/6‐311+G(3df)//6‐311G(d,p). Both the enthalpic terminal and penultimate unit effects, determined according to the theoretical thermochemistry, depend on the level of theory and basis set used for the molecular orbital calculations. The best performing B3LYP/6‐311+G(3df)//B3LYP/6‐311G(d,p) procedure gives theoretical enthalpies for the addition of styrene and acrylonitrile to CH that differ from experimental values by 0.6 and 1.6 kcal mol?1, respectively. An analysis of the results obtained here leads to the conclusion that at least for the styrene–acrylonitrile monomer system, that is, a monomer system known as one of the few systems that do not conform to terminal model composition and microstructure equations, the enthalpic terminal unit effects seem to depend on the penultimate units of the growing radical. This finding, together with the outcome from our previous work on the dependence of the penultimate effects on the terminal units in a growing macroradical, indicates the inseparability of the enthalpic terminal (implicit) and explicit penultimate unit effects on the radical copolymerization. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1778–1787, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号