首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This work investigates fully developed turbulent flows of carbon-dioxide close to its vapour-liquid critical point in a channel with a hot and a cold wall. Two direct numerical simulations are performed at low Mach numbers, with the trans-critical transition near the channel centre and the cold wall, respectively. An additional simulation with constant transport properties is used to selectively investigate the effect of the non-linear equation of state on turbulence. Compared to the case where the pseudo-critical transition occurs in the channel center, the case with the pseudo-critical transition close to the cold wall reveals that compressibility effects can exist in the near-wall region even at low Mach numbers. An analysis of the velocity streaks near the hot and the cold walls also indicates a greater degree of streak coherence near the cold wall. A comparison between the constant and variable viscosity cases at the same Reynolds number, Mach number and having the same isothermal wall boundary conditions reveals that variable viscosity increases turbulence near the cold wall and also causes higher velocity gradients near the hot wall. We also show that the extended van Driest transformation results in a better agreement of the velocity profile with the log-law of the wall compared to the standard van Driest transformation. The semi-locally scaled turbulent velocity fluctuations and the turbulent kinetic energy budgets on the hot and the cold sides of the channel collapse on top of each other, thereby establishing the validity of Morkovin’s hypothesis.  相似文献   

2.
We discuss the problem of well-posedness of the compressible (barotropic) Euler system in the framework of weak solutions. The principle of maximal dissipation introduced by C.M. Dafermos is adapted and combined with the concept of admissible weak solutions. We use the method of convex integration in the spirit of the recent work of C.DeLellis and L.Székelyhidi to show various counterexamples to well-posedness. On the other hand, we conjecture that the principle of maximal dissipation should be retained as a possible criterion of uniqueness as it is violated by the oscillatory solutions obtained in the process of convex integration.  相似文献   

3.
The aim of this work is to determine the linear stability of a compressible Rayleigh layer and to ascertain what role unsteady effects play. A Rayleigh layer is formed when an infinite flat plate is impulsively set in motion in its own plane with constant velocity beneath an initially quiescent fluid. When the fluid is compressible there is a motion both parallel and normal to the plate. The classical boundary-layer scaling is employed to determine solutions which are expressed in terms of a similarity variable and are valid for a large range of Mach, Prandtl and Reynolds numbers. Solutions are presented for both an adiabatic and iso-thermal temperature boundary condition at the plate. The temporal stability of the flow is considered by solving an Orr–Sommerfeld system: here the underlying flow is calculated at a certain time and the instantaneous stability to viscous travelling waves is determined. The stability is seen to be altered by changing the Mach number (an increase of which decreases the stability of the flow), and also by cooling and heating the wall. These results are limited by the fact that the growth of the layer in time is not taken into account. To include this we consider the large Reynolds number limit and use a triple-deck structure to determine the modes characteristics. The triple-deck approach is used to determine an asymptote to the lower branch of the neutral curve and unsteady effects can be included in a consistent manner. For the upper branch, however, a five-deck structure is required due to the fact that the critical layer is now distinct from the viscous sublayer. The upper-branch stability is only calculated to the first order which is sufficient to give an insight into the stability characteristics.  相似文献   

4.
5.
Summary A one dimensional theory of compressible inviscid fluid jets is established using a direct Cosserat type theory in contrast to procedures in which one dimensional equations are obtained by approximations of those used for a three dimensional theory. Applications are made to straight jets and circular rings.  相似文献   

6.
7.
8.
We prove the local-in-time existence of solutions with a surface of current-vortex sheet (tangential discontinuity) of the equations of ideal compressible magnetohydrodynamics in three space dimensions provided that a stability condition is satisfied at each point of the initial discontinuity. This paper is a natural completion of our previous analysis (Trakhinin in Arch Ration Mech Anal 177:331–366, 2005) where a sufficient condition for the weak stability of planar current-vortex sheets was found and a basic a priori estimate was proved for the linearized variable coefficients problem for nonplanar discontinuities. The original nonlinear problem is a free boundary hyperbolic problem. Since the free boundary is characteristic, the functional setting is provided by the anisotropic weighted Sobolev spaces . The fact that the Kreiss–Lopatinski condition is satisfied only in a weak sense yields losses of derivatives in a priori estimates. Therefore, we prove our existence theorem by a suitable Nash–Moser-type iteration scheme.  相似文献   

9.
Considering a bounded sequence of weak solutions to the compressible Navier–Stokes system, we introduce Young measures as in [12] in order to describe a “homogenized system” satisfied in the limit. We then study the Cauchy problem associated to this “homogenized system” when Young measures are convex combinations of Dirac measures.  相似文献   

10.
In this paper we extend and complement the results in Chiodaroli et al. (Global ill-posedness of the isentropic system of gas dynamics, 2014) on the well-posedness issue for weak solutions of the compressible isentropic Euler system in 2 space dimensions with pressure law p(ρ) = ρ γ , γ ≥ 1. First we show that every Riemann problem whose one-dimensional self-similar solution consists of two shocks admits also infinitely many two-dimensional admissible bounded weak solutions (not containing vacuum) generated by the method of De Lellis and Székelyhidi (Ann Math 170:1417–1436, 2009), (Arch Ration Mech Anal 195:225–260, 2010). Moreover we prove that for some of these Riemann problems and for 1 ≤ γ < 3 such solutions have a greater energy dissipation rate than the self-similar solution emanating from the same Riemann data. We therefore show that the maximal dissipation criterion proposed by Dafermos in (J Diff Equ 14:202–212, 1973) does not favour the classical self-similar solutions.  相似文献   

11.
A compressible Stokes system is studied in a polygon with one concave vertex. A corner singularity expansion is obtained up to second order. The expansion contains the usual corner singularity functions for the velocity plus an “associated” velocity singular function, and a pressure singular function. In particular the singularity of pressure is not local but occurs along the streamline emanating from the incoming concave vertex. It is observed that certain first derivatives of the pressure become infinite along the streamline of the ambient flow emanating from the concave vertex. Higher order regularity is shown for the remainder. This work was supported by the Com2MaC-SRC/ERC program of MOST/KOSEF (grant R11-1999-054), and by the U.S. National Science Foundation.  相似文献   

12.
In many flows the turbulence is weakly compressible even at large Mach number. For example, in a compressible boundary layer Ma<5, the differences relative to an incompressible boundary layer understood as being caused by density variations that accompany variations temperature across the layer. Turbulent fluctuations in a boundary layer are therefore expected to be dominated by the effects nonconstant temperature, and low Mach number theories in which fluctuations are not dominant should be applicable to the fluctuating field. However, the analysis of compressible boundary layer DNS data reveals presence of significant acoustic fluctuations. To distinguish acoustic and thermal effects, a numerical decomposition procedure compressible boundary layer fluctuations is applied to determine the and nonacoustic fluctuations. Except for very near the wall, where decomposition procedure is not valid, it is found that the fluctuations are only weakly coupled to the acoustic fluctuations at numbers as high as 6. Received 13 March 2000 and accepted 21 May 2001  相似文献   

13.
In this paper, we study the transonic shock problem for the full compressible Euler system in a general two-dimensional de Laval nozzle as proposed in Courant and Friedrichs (Supersonic flow and shock waves, Interscience, New York, 1948): given the appropriately large exit pressure p e(x), if the upstream flow is still supersonic behind the throat of the nozzle, then at a certain place in the diverging part of the nozzle, a shock front intervenes and the gas is compressed and slowed down to subsonic speed so that the position and the strength of the shock front are automatically adjusted such that the end pressure at the exit becomes p e(x). We solve this problem completely for a general class of de Laval nozzles whose divergent parts are small and arbitrary perturbations of divergent angular domains for the full steady compressible Euler system. The problem can be reduced to solve a nonlinear free boundary value problem for a mixed hyperbolic–elliptic system. One of the key ingredients in the analysis is to solve a nonlinear free boundary value problem in a weighted Hölder space with low regularities for a second order quasilinear elliptic equation with a free parameter (the position of the shock curve at one wall of the nozzle) and non-local terms involving the trace on the shock of the first order derivatives of the unknown function.  相似文献   

14.
15.
An interactive computerized system capable of evaluating interferograms, obtained for example in gas flow studies, has been developed. The program takes full advantage of the facilities offered by the Apple 2 microcomputer and is designed so that the user needs no previous knowledge of computers and/or software. The program is constructed of several main programs invoking other sub-programs; each program can be active at each step of the process and is menu driven. Thus, the user does not have to remember either the questions or their order of appearance.  相似文献   

16.
RID="ID=" Communicated by P. HallAbstract:The absolute/convective instability of two-dimensional wakes forming behind a flat plate and near the trailing-edge of a thin wedge-shaped aerofoil in an incompressible/compressible fluid is investigated. The mean velocity profiles are obtained by solving numerically the classical compressible boundary-layer equations with a negative pressure gradient for the flat plate case, and the incompressible triple-deck equations for a thin wedge-shaped trailing-edge. In addition for a Joukowski aerofoil the incompressible mean boundary-layer flow in the vicinity of the trailing-edge is also calculated by solving the interactive boundary-layer equations. A linear stability analysis of the boundary-layer profiles shows that a pocket of absolute instability occurs downstream of the trailing-edge with the extent of the instability region increasing with more adverse pressure gradients. The region of absolute instability persists along the near-wake axis, while the majority of the wake is convectively unstable. For a thin wedge-shaped trailing-edge in an incompressible fluid, a similar stability analysis of the velocity profiles obtained via a composite expansion, also shows the occurrence of absolute instability behind the trailing-edge for a wedge angle greater than a critical value. For increasing values of the wedge angle and for thicker aerofoils, separation takes place near the trailing-edge and the extent of absolute instability increases. Calculations also show that for insulated plates compressibility has a stabilizing effect but cooling the wall destabilizes the flow unlike wall heating.} Received 11 May 1998 and accepted 25 February 1999  相似文献   

17.
We prove a rigorous convergence result for the compressible to incompressible limit of weak entropy solutions to the isothermal one dimensional Euler equations.  相似文献   

18.
The paper is aimed at reviewing and adding some new results to our recent work on a force theory for viscous compressible flows around a finite body. It has been proposed to analyze aerodynamic forces directly in terms of fluid elements of nonzero vorticity and density gradient. Let ρ denote the density, u the velocity, and ω the vorticity. It is demonstrated that for largely separated flows about bluff bodies, there are two major source elements: R e(x) =−?u 2∇ρ·∇ϕ and V e(x) =−u×ω·∇ϕ, where ϕ is an acyclic potential, generated by the solid body moving with unit velocity in the negative direction of the force considered. In particular, under mild conditions, the (unique) choice of ϕ enforces that the elements R e(x) and V e(x) decay rapidly away from the body. Four kinds of finite body are considered: a circular cylinder, a sphere, a hemi sphere-cylinder, and a delta wing of elliptic section—all in transonic-to-supersonic regimes. From an extensive numerical study carried out for these bodies, it is found that these two elements contribute to 95% or more of the total drag or lift for all the cases under consideration. Moreover, R e(x) due to density gradient becomes progressively important relative to V e(x) due to vorticity as the Mach number increases. The present method of force analysis enables effective analysis and assessment of relative importance of aerodynamics forces, contributed from individual flow structures. The analysis could therefore be very much useful in view of the rapid growth in numerical fluid dynamics; detailed (either local or global) flow information is often available. The paper is dedicated to Sir James Lighthill in honor of his great contributions to aeronautics on the occasion of the publication of his collected works. Received 3 January 1997 and accepted 11 April 1997  相似文献   

19.
Numerical simulations have been performed of a synthetic jet interacting with a laminar hypersonic boundary layer. Two datum cases were also considered, no jet and steady jet. The simulations for the case of no jet are in agreement with available experimental data. Predicted flow features of the steady jet interaction are broadly consistent with previous studies. For the synthetic jet, the upstream and downstream separated regions are dramatically reduced in size, and the jet appears to lie closer to the surface, compared with the steady jet. It is also found that the synthetic jet induces a greater mixing rate than the steady jet. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
A theoretical analysis is presented to solve numerically the steady state Navier–Stokes equations, continuity equation and energy equation for a compressible ideal gas flow between two closely spaced, in general nonparallel, infinitely wide plates (siider bearing). The analysis includes the gas inertia effect and covers both non-choked and choked flows. The results of the present analysis compare very well with both analytical and experimental results of compressible flow in a slider bearing comprised of two parallel and stationary plates. It was found that for choked flow the gas inertia effect is important, while the consideration of the energy equation does not affect the accuracy of the calculated flow substantially. Finally, the stiffness of a slider bearing is presented for different geometrical characteristics of the bearing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号