首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A chemo‐sensor [Ru(bpy)2(bpy‐DPF)](PF6)2 ( 1 ) (bpy=2,2′‐bipyridine, bpy‐DPF=2,2′‐bipyridyl‐4,4′‐bis(N,N‐di(2‐picolyl))formylamide) for Cu2+ using di(2‐picolyl)amine (DPA) as the recognition group and a ruthenium(II) complex as the reporting group was synthesized and characterized successfully. It demonstrates a high selectivity and efficient signaling behavior only for Cu2+ with obvious red‐shifted MLCT (metal‐to‐ligand charge transfer transitions) absorptions and dramatic fluorescence quenching compared with Zn2+ and other metal ions.  相似文献   

2.
The substitution behavior of the monodentate Cl ligand of a series of ruthenium(II) terpyridine complexes (terpyridine (tpy)=2,2′:6′,2′′-terpyridine) has been investigated. 1H NMR kinetic experiments of the dissociation of the chloro ligand in D2O for the complexes [Ru(tpy)(bpy)Cl]Cl ( 1 , bpy=2,2’-bipyridine) and [Ru(tpy)(dppz)Cl]Cl ( 2 , dppz=dipyrido[3,2-a:2′,3′-c]phenazine) as well as the binuclear complex [Ru(bpy)2(tpphz)Ru(tpy)Cl]Cl3 ( 3 b , tpphz=tetrapyrido[3,2-a:2′,3′-c:3′′,2′′-h:2′′′,3′′′-j]phenazine) were conducted, showing increased stability of the chloride ligand for compounds 2 and 3 due to the extended π-system. Compounds 1 – 5 ( 4 =[Ru(tbbpy)2(tpphz)Ru(tpy)Cl](PF6)3, 5 =[Ru(bpy)2(tpphz)Ru(tpy)(C3H8OS)/(H2O)](PF6)3, tbbpy=4,4′-di-tert-butyl-2,2′-bipyridine) are tested for their ability to run water oxidation catalysis (WOC) using cerium(IV) as sacrificial oxidant. The WOC experiments suggest that the stability of monodentate (chloride) ligand strongly correlates to catalytic performance, which follows the trend 1 > 2 > 5 ≥ 3 > 4 . This is also substantiated by quantum chemical calculations, which indicate a stronger binding for the chloride ligand based on the extended π-systems in compounds 2 and 3 . Additionally, a theoretical model of the mechanism of the oxygen evolution of compounds 1 and 2 is presented; this suggests no differences in the elementary steps of the catalytic cycle within the bpy to the dppz complex, thus suggesting that differences in the catalytic performance are indeed based on ligand stability. Due to the presence of a photosensitizer and a catalytic unit, binuclear complexes 3 and 4 were tested for photocatalytic water oxidation. The bridging ligand architecture, however, inhibits the effective electron-transfer cascade that would allow photocatalysis to run efficiently. The findings of this study can elucidate critical factors in catalyst design.  相似文献   

3.
Two ruthenium(II) complexes with polypyridyl ligands, [Ru(bpy)2(AFO)](ClO4)2 · H2O (1) and [Ru(dmp)2 (AFO)](ClO4)2 · 1/2DMF · 1/2MeCN (2) (bpy = 2,2′-bipyridine; dmp = 2,9-dimethyl-1,10-phenanthroline; AFO = 4,5-diazafluoren-9-one; DMF = N,N-dimethylformamide), were synthesized and characterized by elemental analyses, i.r. and u.v.-vis. spectra. The structures of the two complexes were determined by single crystal X-ray diffraction techniques. To relieve ligand interaction, the coordination sphere is distorted so as to form specific angles (δ) between the polypyridyl ligand planes and coordination planes (N-Ru-N). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
The effects of copper ion on the interaction of [Ru(bpy)2HPIP]2+(bpy = 2,2′-bipyridine, HPIP = 2-(2-hydroxyphenyl) imidazo [4,5-f] [1, 10] phenanthroline) with DNA have been investigated by electronic absorption spectroscopy and fluorescence spectroscopy. HPIP ligand of the complex with an intramolecular hydrogen bond can bind Cu2+ in the absence of DNA, as revealed by the absorbance and fluorescence decrease for [Ru(bpy)2HPIP]2+. The resultant heterometallic complex binds to DNA via intercalation of HPIP into the DNA base pairs and its DNA-binding ability is stronger than [Ru(bpy)2HPIP]2+ itself. The DNA bound [Ru(bpy)2HPIP]2+ cannot bind Cu2+ at low Cu2+ concentration and the intramolecular hydrogen bond in HPIP is located inside the DNA helix. While the Cu2+ concentration is relative high, Cu2+ can quench the fluorescence of DNA bound [Ru(bpy)2HPIP]2+. The quenching reason is proposed.  相似文献   

5.
Cyclometallated ruthenium complexes typically exhibit red-shifted absorption bands and lower photolability compared to their polypyridyl analogues. They also have lower symmetry, which sometimes makes their synthesis challenging. In this work, the coordination of four N,S bidentate ligands, 3-(methylthio)propylamine (mtpa), 2-(methylthio)ethylamine (mtea), 2-(methylthio)ethyl-2-pyridine (mtep), and 2-(methylthio)methylpyridine (mtmp), to the cyclometallated precursor [Ru(bpy)(phpy)(CH3CN)2]+ (bpy=2,2′-bipyridine, Hphpy=2-phenylpyridine) has been investigated, furnishing the corresponding heteroleptic complexes [Ru(bpy)(phpy)(N,S)]PF6 ([ 2 ]PF6–[ 5 ]PF6, respectively). The stereoselectivity of the synthesis strongly depended on the size of the ring formed by the Ru-coordinated N,S ligand, with [ 2 ]PF6 and [ 4 ]PF6 being formed stereoselectively, but [ 3 ]PF6 and [ 5 ]PF6 being obtained as mixtures of inseparable isomers. The exact stereochemistry of the air-stable complex [ 4 ]PF6 was established by a combination of DFT, 2D NMR, and single-crystal X-ray crystallographic studies. Finally, [ 4 ]PF6 was found to be photosubstitutionally active under irradiation with green light in acetonitrile, which makes it the first cyclometallated ruthenium complex capable of undergoing selective photosubstitution of a bidentate ligand.  相似文献   

6.
A novel ruthenium bisbipyridine complex, [Ru(bpy)2(hpzb)](PF6)2 (1) (hpzb = hexakis(pyrazol-1-yl)benzene) was obtained in the reaction between [Ru(bpy)2Cl2], the tritopic ligand hpzb and NH4PF6. A high selectivity has been found in the reaction and when the hpzb ligand was made to react with more than one ruthenium fragment, it coordinated selectively only to the first metallic fragment, and it was not possible to introduce two or three ruthenium centres. A similar complex with a deuterated bipyridine has also been obtained. The reaction with the methylated ligand hexakis(3,5-dimethylpyrazol-1-yl)benzene does not take place. A complete assignment of all the proton and carbon NMR signals of 1 was carried out. The orientation of the free pyrazolyl groups is also discussed. The redox properties and the anticancer activity of complex 1 have been studied.  相似文献   

7.
Ruthenium(II) polypyridyl complexes with macromolecular ligands poly(methylolacrylamide-co-vinylpyridine) and poly (acrylamide-co-vinylpyridine) have been synthesized. The macromolecular ruthenium (II) complexes which are soluble in water have been characterized and their absorption and emission properties have been studied in aqueous solution. Photolysis of the complex in aqueous solution leads to photoaquation reactions with release of coordinated pyridines of the polymer. In the case of monomeric complex, cis-[Ru(bpy)2(py)2]Cl2, photolysis in water in presence of Cl? ions produces only the substitution of the pyridine by water whereas in the polymeric complexes, [Ru(bpy)2(MAAM-co-VP)2]Cl2 photolysis in the presence of chloride produces [Ru(bpy)2(MAAM-co-VP)Cl]Cl and [Ru(bpy)2(AM-co-VP)Cl]Cl, respectively. Quantum yields for the photosubstitution reactions have been determined and mechanistic details are outlined.  相似文献   

8.
The DNA binding characteristics of mixed ligand complexes of the type [Co(en)2(L)]Br3 where en = N,N′-ethylenediamine and L = 1,10-phenanthroline (phen), 2,2′-bipyridine (bpy), 1,10-phenanthroline-5,6-dione (phendione), dipyrido[3,2-a:2′,3′-c]phenazine (dppz) have been investigated by absorption titration, competitive binding fluorescence spectroscopy and viscosity measurements. The order of intercalative ability of the coordinated ligands is dppz > phen > phendione > bpy in this series of complexes.  相似文献   

9.
Modulation of the luminescence properties of a di-ruthenium(II) complex [(bpy)2Ru(BL)Ru(bpy)2]4+ (bpy = 2,2′-bipyridine, BL = 2-hydroxyl-5-methyl-1,3-bis([1,10]phenanthroline-[5,6-d]imidazol-2-yl)benzene) by DNA and/or Cu2+ ion has been investigated. It is found that the ruthenium(II) complex can coordinate to the Cu2+ ion in both the absence and presence of DNA. Binding to DNA is through electrostatic interactions and the intramolecular hydrogen bond in the complex is located outside of the DNA. The binding constant is 1.6 × 104 M−1. Moreover, it is demonstrated that DNA has the ability to enhance the luminescence intensities of both the di-ruthenium(II) complex and the tri-metallic system generated by chelating with Cu2+. Conversely, Cu2+ ion can quench the luminescence of both the free ruthenium(II) complex and the DNA-bound ruthenium(II) complex.  相似文献   

10.
A new bridging ligand, 2,3‐di(2‐pyridyl)‐5‐phenylpyrazine (dpppzH), has been synthesized. This ligand was designed so that it could bind two metals through a NN‐CNN‐type coordination mode. The reaction of dpppzH with cis‐[(bpy)2RuCl2] (bpy=2,2′‐bipyridine) affords monoruthenium complex [(bpy)2Ru(dpppzH)]2+ ( 12+ ) in 64 % yield, in which dpppzH behaves as a NN bidentate ligand. The asymmetric biruthenium complex [(bpy)2Ru(dpppz)Ru(Mebip)]3+ ( 23+ ) was prepared from complex 12+ and [(Mebip)RuCl3] (Mebip=bis(N‐methylbenzimidazolyl)pyridine), in which one hydrogen atom on the phenyl ring of dpppzH is lost and the bridging ligand binds to the second ruthenium atom in a CNN tridentate fashion. In addition, the RuPt heterobimetallic complex [(bpy)2Ru(dpppz)Pt(C?CPh)]2+ ( 42+ ) has been prepared from complex 12+ , in which the bridging ligand binds to the platinum atom through a CNN binding mode. The electronic properties of these complexes have been probed by using electrochemical and spectroscopic techniques and studied by theoretical calculations. Complex 12+ is emissive at room temperature, with an emission λmax=695 nm. No emission was detected for complex 23+ at room temperature in MeCN, whereas complex 42+ displayed an emission at about 750 nm. The emission properties of these complexes are compared to those of previously reported Ru and RuPt bimetallic complexes with a related ligand, 2,3‐di(2‐pyridyl)‐5,6‐diphenylpyrazine.  相似文献   

11.
A series of trans‐(Cl)‐[Ru(L)(CO)2Cl2]‐type complexes, in which the ligands L are 2,2′‐bipyridyl derivatives with amide groups at the 5,5′‐positions, are synthesized. The C‐connected amide group bound to the bipyridyl ligand through the carbonyl carbon atom is twisted with respect to the bipyridyl plane, whereas the N‐connected amide group is in the plane. DFT calculations reveal that the twisted structure of the C‐connected amide group raises the level of the LUMO, which results in a negative shift of the first reduction potential (Ep) of the ruthenium complex. The catalytic abilities for CO2 reduction are evaluated in photoreactions (λ>400 nm) with the ruthenium complexes (the catalyst), [Ru(bpy)3]2+ (bpy=2,2′‐bipyridine; the photosensitizer), and 1‐benzyl‐1,4‐dihydronicotinamide (the electron donor) in CO2‐saturated N,N‐dimethylacetamide/water. The logarithm of the turnover frequency increases by shifting Ep a negative value until it reaches the reduction potential of the photosensitizer.  相似文献   

12.
《Polyhedron》2001,20(15-16):2027-2032
Five mixed ligand complexes of trivalent ruthenium with general formula [Ru(L)(bpy)Cl2], where L=p-substituted N-phenyl derivatives of 2-carbamoylpyridine and bpy=2,2′-bipyridine, have been synthesised and characterised. X-ray crystal structural characterisation of a representative complex, i.e. where L=2-(N-(4-nitrophenyl)carbamoyl)pyridine, shows that the amide-containing ligand coordinates to the ruthenium(III) centre via the pyridyl nitrogen and the amidato nitrogen, forming a five-membered chelate ring. The complexes are paramagnetic (low spin d5, S=1/2) and show a single signal in their EPR spectra in 1:1 dichloromethane–toluene solution at 77 K. In dichloromethane solution, these complexes show intense ligand to metal charge transfer transitions in the visible region. All the complexes display two cyclic voltammetric responses, a ruthenium(III)–ruthenium(IV) oxidation in the range from +0.63 to +0.93 V and a ruthenium(III)–ruthenium(II) reduction in the range from −0.63 to −0.73 V(vs ferrocene–ferrocenium couple). The potentials of both couples for all the complexes are found to be sensitive to the nature of the substituents present on the amide ligands, L.  相似文献   

13.
A novel mixed ligand nickel complex [NiLB] [H2L-N-4-diethylaminosalicylidine-N′-4-nitrobenzoyl hydrazone and B-4-picoline] has been synthesized and characterized by elemental analysis, IR spectrum, UV-Vis spectrum and structure has been confirmed by single crystal X-ray structure analysis. The crystal structure reveals that the complex adopts distorted square planar structure with ONO donor atoms of primary ligand and N donor atom of the secondary ligand 4-picoline.  相似文献   

14.
Two isomers of heteroleptic bis(bidentate) ruthenium(II) complexes with dimethyl sulfoxide (dmso) and chloride ligands, trans(Cl,Nbpy)- and trans(Cl,NHdpa)-[Ru(bpy)Cl(dmso-S)(Hdpa)]+ (bpy: 2,2′-bipyridine; Hdpa: di-2-pyridylamine), are synthesized. This is the first report on the selective synthesis of a pair of isomers of cis-[Ru(L)(L′)XY]n+ (L≠L′: bidentate ligands; X≠Y: monodentate ligands). The structures of the ruthenium(II) complexes are clarified by means of X-ray crystallography, and the signals in the 1H NMR spectra are assigned based on 1H–1H COSY spectra. The colors of the two isomers are clearly different in both the solid state and solution: the trans(Cl,Nbpy) isomer has a deep red color, whereas the trans(Cl,NHdpa) isomer is yellow. Although both complexes have intense absorption bands at λ≈440–450 nm, only the trans(Cl,Nbpy) isomer has a shoulder band at λ≈550 nm. DFT calculations indicate that the LUMOs of both isomers are the π* orbitals in the bpy ligand, and that the LUMO level of the trans(Cl,Nbpy) isomer is lower than that of the trans(Cl,NHdpa) isomer due to the trans effect of the Cl ligand; thus resulting in the appearance of the shoulder band. The HOMO levels are almost the same in both isomers. The energy levels are experimentally supported by cyclic voltammograms, in which these isomers have different reduction potentials and similar oxidation potentials.  相似文献   

15.
The luminescence properties of [Ru(bpy)2MDHIP]2+ (bpy = 2,2′-bipyridine, MDHIP = 2,4-dihydrophenyl-imidazo[4,5-f][1,10]phenanthroline) in the absence and presence of DNA modulated by the introduction of Cu2+ ion and EDTA have been investigated. It is found that the ruthenium(II) complex can insert and stack between the base pairs of calf thymus DNA with MDHIP ligand, and the intramolecular hydrogen bond is located inside of the DNA. The presence of DNA can enhance the luminescence intensities of [Ru(bpy)2MDHIP]2+ both in buffer solution and on an ITO surface. Moreover, the luminescence intensities of [Ru(bpy)2MDHIP]2+ and DNA-bound [Ru(bpy)2MDHIP]2+ are quenched by Cu2+, and next recovered by the addition of EDTA. The repetitive luminescence-modulations have been achieved through the introduction of equimolar Cu2+ and EDTA, respectively. In addition, it becomes evident that the number of luminescence-modulation cycles for [Ru(bpy)2MDHIP]2+ in the absence and presence of DNA is influenced by the cumulative concentrations of CuEDTA, generated successively by the strong coordination of Cu2+ to EDTA.  相似文献   

16.
A ditopic benzobis(carbene) ligand precursor was prepared that contained a chelating pyridyl moiety to ensure co‐planarity of the carbene ligand and the coordination plane of a bound octahedral metal center. Bimetallic ruthenium complexes comprising this ditopic ligand [L4Ru‐C,N‐bbi‐C,N‐RuL4] were obtained by a transmetalation methodology (C,N‐bbi‐C,N=benzobis(N‐pyridyl‐N′‐methyl‐imidazolylidene). The two metal centers are electronically decoupled when the ruthenium is in a pseudotetrahedral geometry imparted by a cymene spectator ligand (L4=[(cym)Cl]). Ligand exchange of the Cl?/cymene ligands for two bipyridine or four MeCN ligands induced a change of the coordination geometry to octahedral. As a consequence, the ruthenium centers, separated through space by more than 10 Å, become electronically coupled, which is evidenced by two distinctly different metal‐centered oxidation processes that are separated by 134 mV (L4=[(bpy)2]; bpy=2,2′‐bipyridine) and 244 mV (L4=[(MeCN)4]), respectively. Hush analysis of the intervalence charge‐transfer bands in the mixed‐valent species indicates substantial valence delocalization in both complexes (delocalization parameter Γ=0.41 and 0.37 in the bpy and MeCN complexes, respectively). Spectroelectrochemical measurements further indicated that the mixed‐valent RuII/RuIII species and the fully oxidized RuIII/RuIII complexes gradually decompose when bound to MeCN ligands, whereas the bpy spectators significantly enhance the stability. These results demonstrate the efficiency of carbenes and, in particular, of the bbi ligand scaffold for mediating electron transfer and for the fabrication of molecular redox switches. Moreover, the relevance of spectator ligands is emphasized for tailoring the degree of electronic communication through the benzobis(carbene) linker.  相似文献   

17.
Ruthenium(II) complexes bearing a redox-active tridentate ligand 4′-(2,5-dimethoxyphenyl)-2,2′:6′,2′′-terpyridine (tpyOMe), analogous to terpyridine, and 2,2′-bipyridine (bpy) were synthesized by the sequential replacement of Cl by CH3CN and CO on the complex. The new ruthenium complexes were characterized by various methods including IR and NMR. The molecular structures of [Ru(tpyOMe)(bpy)(CH3CN)]2+ and two kinds of [Ru(tpyOMe)(bpy)(CO)]2+ were determined by X-ray crystallography. The incorporation of monodentate ligands (Cl, CH3CN and CO) regulated the energy levels of the MLCT transitions and the metal-centered redox potentials of the complexes. The kinetic data observed in this study indicates that the ligand replacement reaction of [Ru(tpyOMe)(bpy)Cl]+ to [Ru(tpyOMe)(bpy)(CH3CN)]2+ proceeds by a solvent-assisted dissociation process.  相似文献   

18.
New dinuclear ruthenium manganese complexes of general composition (bpy)2Ru(L)MnClx(H2O)2 (L is 1,10-phenanthroline-5,6-dione, 3,3′-dicarboxy-2,2′-bipyridyl, or bis(pyrazolyl); x = 2 or 4) were synthesized by the reaction of (bpy)2Ru(L) with MnCl2 · 4H2O. These compounds and the starting mononuclear ruthenium complexes were studied by spectrophotometric and electrochemical methods in MeCN. The position of the charge-transfer band RuII → L in the spectra depends on the donor-acceptor characteristics of the ligand L. For the dinuclear complex under study, the formal potentials of reversible one-electron oxidation of RuII are in the range of 0.9–1.2 V (vs. the standard hydrogen electrode), whereas oxidation of MnII occurs at more positive (by 0.1–0.2 V) potentials. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2281–2285, October, 2005.  相似文献   

19.
Synthesis procedures are described for the new stable mixed ligand complexes, [Pd(Hpa)(pa)]Cl, [Pd(pa)(H2O)2]Cl, [Pd(pa)(en)]Cl, [Pd(pa)(bpy)]Cl, [Pd(pa)(phen)Cl], [Pd(pa)(pyq)Cl], cis-[MoO2(pa)2], [Ag(pa)(bpy)], [Ag(pa)(pyq)], trans-[UO2(pa)(pyq)](BPh4) and [ReO(PPh3)(pa)2]Cl (Hpa = 2-piperidine-carboxylic acid, en = ethylene diamine, bpy = 2,2′-bipyridyl, phen = 1,10-phenanthroline, pyq = 2(2′-pyridyl)quinoxaline). Their elemental analyses, conductance, thermal measurements, Raman, IR, electronic, 1H-n.m.r. and mass spectra have been measured and discussed. 2-Piperidine-carboxylic acid and its palladium complexes have been tested as growth inhibitors against Ehrlich ascites tumour cells (EAC) in Swiss albino mice.  相似文献   

20.
Two bis-(β-diketonate) ligands [H2L1 = 3,6-bis-(4,4,4-trifluorobutane-1,3-dione)-9-butyl-carbazole and H2L2 = 3,6-bis-(4,4,4-trifluorobutane-1,3-dione)-9-hexyl-carbazole] were synthesized, and their corresponding dinuclear ruthenium(II) complexes [Ru2(bpy)4(L1)](PF6)2 (1) and [Ru2(bpy)4(L2)](PF6)2 (2) (bpy = 2,2′-bipyridine)] were prepared by the reaction of Ru(bpy)2Cl2 · 2H2O with H2L1 and H2L2 in ethanol, respectively. The structure of the ligand H2L2 was determined by single-crystal X-ray diffraction. The spectral properties of the ligands and their complexes have been studied. The absorption spectra of the complexes exhibit intense ligand-centered bands in the UV region and metal-to-ligand charge-transfer bands in the visible region. The two-photon absorption (TPA) coefficient β and TPA cross-section σ were determined by the Z-scan technique, which revealed that the two complexes exhibit strong TPA due to electronic extensive delocalization. The complexes undergo a reversible or quasi-reversible one-electron metal-centered redox process at E 1/2 = +0.93 V and E 1/2 = +0.92 V, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号