首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports a novel detection method for DNA hybridization based on the electrochemiluminescence (ECL) of Ru(bpy)(3)(2+) with a DNA-binding intercalator as a reductant of Ru(bpy)(3)(3+). Some ECL-inducible intercalators have been screened in this study using electrochemical methods combined with a chemiluminescent technique. The double-stranded DNA intercalated by doxorubicin, daunorubicin, or 4',6-diamidino-2-phenylindole (DAPI) shows a good ECL with Ru(bpy)(3)(2+) at +1.19 V (versus Ag/AgCl), while the non-intercalated single-stranded DNA does not. In order to stabilize the self-assembled DNA molecules during ECL reaction, we constructed the ECL DNA biosensor separating the ECL working electrode with an immobilized DNA probe. A gold electrode array on a plastic plate was assembled with a thru-hole array where oligonucleotide probes were immobilized in the side wall of thru-hole array. The fabricated ECL DNA biosensor was used to detect several pathogens using ECL technique. A good specificity of single point mutations for hepatitis disease was obtained by using the DAPI-intercalated Ru(bpy)(3)(2+) ECL.  相似文献   

2.
Guo W  Yuan J  Li B  Du Y  Ying E  Wang E 《The Analyst》2008,133(9):1209-1213
A unique multilabeling at a single-site protocol of the Ru(bpy)(3)(2+) electrochemiluminescence (ECL) system is proposed. Nanoparticles (NPs) were used as assembly substrates to enrich ECL co-reactants of Ru(bpy)(3)(2+) to construct nanoscale-enhanced ECL labels. Two different kinds of NP substrates [including semiconductor NPs (CdTe) and noble metal NPs (gold)] capped with 2-(dimethylamino)ethanethiol (DMAET) [a tertiary amine derivative which is believed to be one of the most efficient of co-reactants of the Ru(bpy)(3)(2+) system] were synthesized through a simple one-pot synthesis method in aqueous media. Although both CdTe and gold NPs realized the enrichment of ECL co-reactants, they presented entirely different ECL performances as nanoscale ECL co-reactants of Ru(bpy)(3)(2+). The different effects of these two NPs on the ECL of Ru(bpy)(3)(2+) were studied. DMAET-capped CdTe NPs showed enormous signal amplification of Ru(bpy)(3)(2+) ECL, whereas DMAET-capped gold NPs showed a slight quenching effect of the ECL signal. DMAET-capped CdTe NPs can be considered to be excellent nanoscale ECL labels of the Ru(bpy)(3)(2+) system, as even a NP solution sample of 10(-18) M was still detectable after an electrostatic self-assembly concentration process. DMAET-capped CdTe NPs were further applied in the construction of aptamer-based biosensing system for proteins and encouraging results were obtained.  相似文献   

3.
It was found that stannous chloride (SnCl(2)), as a popular inorganic reducing reagent, could obviously enhance the electrochemiluminescence (ECL) of tris(2,2'-bipyridyl) ruthenium(II) (Ru(bpy)(3)(2+)) in aqueous solution. Some factors affecting the ECL reactions between Ru(bpy)(3)(2+) and Sn(2+), including pH, concentrations of coreactant, and electrode materials, were investigated by comparison with a classic ECL coreactant tripropylamine (TPA). The Ru(bpy)(3)(2+)-Sn(2+) ECL coreactant system produces stronger and more stable ECL signals, can keep its excellent ECL activity over a wider pH range and has more choices in using electrode materials than the Ru(bpy)(3)(2+)-TPA ECL coreactant system. The ECL mechanism of the Ru(bpy)(3)(2+)-Sn(2+) coreactant system was also studied in detail.  相似文献   

4.
In this work, an electrochemiluminescence (ECL) immunosensor for ultrasensitive detection of α-fetoprotein (AFP) was fabricated using Ru(bpy)(3)(2+)-encapsulated liposome as the label and electrodeposited gold nanoparticles (GNPs) as the immobilizing support. Great signal amplification was achieved since liposome could encapsulate large amount of reporter molecules and GNPs could provide large active surface. Under optimized conditions, with sandwich type format, a linear range of AFP from 0.005 to 0.2 pg/mL and an extremely low detection limit of 0.001 pg/mL was obtained, much lower than that in previous reports. The proposed ECL immnuosensor showed high sensitivity, specificity, and good stability, which may open a new door to ultrasensitive detection of proteins in clinical analysis.  相似文献   

5.
Wang J  Yang Z  Wang X  Yang N 《Talanta》2008,76(1):85-90
Tris(2,2'-bipyridyl) ruthenium(II) (Ru(bpy)(3)(2+))-roxithromycin based electrochemiluminescence (ECL) was enhanced greatly by gold nanoparticles 10 nm in diameter. Capillary electrophoresis (CE) was coupled with the resultant ECL system as a detector for roxithromycin. This ECL emission is explained by the coreactant mechanism where roxithromycin behaves as a coreactant to generate strong reducing species and gold nanoparticles act as "floating nanoelectrodes". The reaction of Ru(bpy)(3)(3+) with the generated strong reducing species on the Pt working electrode as well as on "floating nanoelectrodes" releases Ru(bpy)(3)(2+*), resulting in enhancement of ECL emission. The selectivity of this detection system towards roxithromycin was examined by CE. Under the optimized conditions, the intensity of ECL emission varies linearly with the concentration of roxithromycin from 24 nM to 0.24 mM. The detection limit is 8.4 nM, while without adding gold nanoparticles it is only 84 nM. The detection of roxithromycin in pharmaceutical and urine samples was also performed by the proposed CE-ECL method.  相似文献   

6.
The electrochemiluminescence (ECL) of magnetic microbeads modified with tris(2,2'-bipyridine)ruthenium(II) ([Ru(bpy)3]2+) was studied in the presence of tri-n-propylamine (TPA) to develop highly sensitive ECL detection system, where the employed microbead has a diameter of 4.5 microm. The ECL signal of the [Ru(bpy)3]2+ derivative-modified magnetic microbeads was found to be affected by the geometrical distribution of the magnetic microbeads on the electrode surface. The ECL peak intensity increased with increasing the number of the beads on the electrode surfaces up to 1.6 x 10(6) beads cm(-2), although above 1.6 x 10(6) beads cm(-2), it decreased. The ECL decrease arises from the physical prevention of the ECL from reaching the photomultiplier tube by the excessive beads. The observed peak ECL signal of the [Ru(bpy)3]2+ derivative-modified magnetic microbeads in the presence of NaN3, which serves as a preservative substance, mainly appeared at a potential of +0.90 V vs Ag/AgCl where [Ru(bpy)3]2+ is hardly oxidized, whereas the ECL signal in the absence of NaN3 appeared at a potential of +1.15 V. The presence of NaN3 on the electrode surface retards formation of an oxide layer on the electrode surfaces and promotes TPA oxidation. The ECL response at +0.90 V was mainly attributed to ECL reaction of excited-state [Ru(bpy)3]2+* formed by oxidation of [Ru(bpy)3]+ with TPA radical cation, where the [Ru(bpy)3]+ was generated by reduction of [Ru(bpy)3]2+ with TPA radical.  相似文献   

7.
Li MJ  Jiao P  Lin M  He W  Chen GN  Chen X 《The Analyst》2011,136(1):205-210
A new water-soluble iridium(III) diimine complex with appended sugar was synthesized and characterized. The electrochemiluminescent behavior of the new complex in aqueous buffer was first studied and the ECL signal was found to be much higher than that of [Ru(bpy)(3)](2+) at a Pt working electrode. Tri-n-propylamine (TPA) and antibiotics were determined by the ECL of the iridium(III) complex in aqueous buffer at the Pt electrode and the method was found to show good sensitivity and reproducibility. The new iridium(III) complex was found to display good solubility in aqueous solution and a strong ECL signal at the Pt electrode, which might open up the possibility of its application in analysis.  相似文献   

8.
联吡啶钌(Ru(bpy)■)拥有优良的电致化学发光(ECL)性能,但其较好的水溶性使其固载面临巨大问题。该文制备了Pt纳米粒子与Ru(bpy)■的复合物(Pt NPs-Ru),将其修饰于电极并进一步固载葡萄糖氧化酶(GOx)制得传感器。基于H2O2对Ru(bpy)■-三乙胺体系ECL信号的猝灭作用,随着葡萄糖浓度的增加,其在GOx的催化下原位产生的H2O2量增多,导致ECL信号逐渐减弱,从而实现葡萄糖的检测。ECL强度与葡萄糖浓度的对数在1.0×10-8~5.0×10-5 mol/L范围内呈良好的线性关系,检出限低至5.2×10-9 mol/L。传感器具有好的稳定性和高的选择性。Pt NPs-Ru复合物为ECL传感器的构建提供了良好平台,为葡萄糖检测提供了新方法。  相似文献   

9.
Zhao P  Cao G  Zhou L  Liu Q  Guo M  Huang Y  Cai Q  Yao S 《The Analyst》2011,136(9):1952-1956
Tris(2,3-dibromopropyl) isocyanurate (TBC) is a heterocyclic hexabrominated flame retardant, which cannot be degraded even over a long time and may be a potential environmental pollutant. In this paper, TBC is for the first time as far as we know determined by silver nitrate-enhanced electrochemiluminescence (ECL) using a gold nanoparticles (AuNPs)-modified gold electrode. In our experiments, TBC was found to have the characteristics of increasing the ECL intensity of Ru(bpy)(3)(2+), and the ECL signal was proportional to the concentration of TBC. Based on this, we have successfully developed a novel, fast and sensitive method for the analysis of TBC. The main influencing factors including the volume ratio of acetonitrile and water, and the concentration of Ru(bpy)(3)(2+) were investigated in detail. Compared with using a bare gold electrode in MeCN without AgNO(3), the limit of detection is remarkably lowered by 20 times and the linear range is expanded by 5 times by using the AuNPs-modified gold electrode and AgNO(3). Under the optimal conditions, a limit of detection of 5.0 × 10(-8) M (S/N = 3) is achieved with a linear range of 1.0 × 10(-7) to 5.0 × 10(-5) M. The mechanism of the ECL enhancement of the system is also investigated.  相似文献   

10.
Lu X  Liu D  Du J  Wang H  Xue Z  Liu X  Zhou X 《The Analyst》2012,137(3):588-594
The novel phenomenon of cathodic electrochemiluminescence on a gold electrode in tris(bipyridine) ruthenium(II) (Ru(bpy)(3)(2+)) solution is described for the first time. A cathodic electrochemiluminescence (ECL) was found to mainly occur at 0.4-0.8 V with continuous potential scanning from 0.2-1.4 V and the ECL peak was observed around 0.68 V, which was quite different from generally reported Ru(bpy)(3)(2+) ECL. Our group speculated that Ru(bpy)(3)(2+) possibly reacts with the gold electrode in the acidic phosphate buffer solution (PBS) to generate luminescence. The possible ECL mechanism was discussed according to the presented results. Moreover, it is revealed that the Au as co-reactant in the Ru-system contributed dominantly to the whole ECL. Therefore, the reaction between Ru(bpy)(3)(2+) and the newly formed Au implied that the inert metal Au could become a promising material for ECL investigations.  相似文献   

11.
Zhang W  Zhao D  Zhang R  Ye Z  Wang G  Yuan J  Yang M 《The Analyst》2011,136(9):1867-1872
Electrochemiluminescence (ECL) detection technique using bipyridine-ruthenium(II) complexes as probes is a highly sensitive and widely used method for the detection of various biological and bioactive molecules. In this work, the spectral, electrochemical and ECL properties of a chemically modified bipyridine-ruthenium(II) complex, [Ru(bpy)(2)(dabpy)](2+) (bpy: 2,2'-bipyridine; dabpy: 4-(3,4-diaminophenoxy)-2,2'-bipyridine), were investigated and compared with those of its nitric oxide (NO)-reaction derivative [Ru(bpy)(2)(T-bpy)](2+) (T-bpy: 4-triazolephenoxy-2,2'-bipyridine) and [Ru(bpy)(3)](2+). It was found that the ECL intensity of [Ru(bpy)(2)(dabpy)](2+) could be selectively and sensitively enhanced by NO due to the formation of [Ru(bpy)(2)(T-bpy)](2+) in the presence of tri-n-propylamine. By using [Ru(bpy)(2)(dabpy)](2+) as a probe, a sensitive and selective ECL method with a wide linear range (0.55 to 220.0 μM) and a low detection limit (0.28 μM) was established for the detection of NO in aqueous solutions and living cells. The results demonstrated the utility and advantages of the new ECL probe for the detection of NO in complicated biological samples.  相似文献   

12.
A novel effective co-reactant for electrogenerated chemiluminescence (ECL) of Ru(bpy)(3)(2+) has been found. Alpha-position-dialkylated thiophene derivatives such as 2,5-dimethylthiophene (DMT) could be used as a co-reactant for Ru(bpy)(3)(2+) ECL. The reaction mechanism of the Ru(bpy)(3)(2+)/DMT system was proposed on the basis of the identification of the reaction product, the relationship between the molecular structure and the chemiluminescent intensity, and the electrochemical study. The obtained reaction mechanism was similar to that of the Ru(bpy)(3)(2+)/aliphatic tertiary amine system. Based on these results, the preliminary studies of the Ru(bpy)(3)(2+) ECL detection system using DMT as a co-reactant were performed. Under the optimal ECL conditions, the plot of ECL intensity versus the concentration of Ru(bpy)(3)(2+) was linear over the concentration range 1.0x10(-8) to 1.5x10(-7) M (determination coefficient=0.9996).  相似文献   

13.
Guo Z  Shen Y  Zhao F  Wang M  Dong S 《The Analyst》2004,129(7):657-663
The electrochemical and electrogenerated chemiluminescence of Ru(bpy)(3)(2+) immobilized in [clay/Ru(bpy)(3)(2+)](n) multilayer films by layer-by-layer assembly were investigated. The stable multilayer films of clay and Ru(bpy)(3)(2+) were assembled by alternate adsorption of negatively charged clay platelets and positively charged Ru(bpy)(3)(2+) from their aqueous dispersions. UV-vis spectroscopy, quartz crystal microbalance (QCM), cyclic voltammetry, and electrogenerated chemiluminescence (ECL) were used to monitor the immobilization of Ru(bpy)(3)(2+) and the regular growth of the [clay/Ru(bpy)(3)(2+)](n) multilayer films. The multilayer films modified electrode was used for the ECL detection of tripropylamine (TPA) and oxalate. The proposed novel immobilized method exhibited good stability, reproducibility and high sensitivity for the determination of TPA and oxalate, which mainly resulted from the contributing of clay nanoparticles with appreciable surface area, special structural features and unusual intercalation properties. Detection limits were 20 and 100 nM for TPA and oxalate, respectively and the linear concentration range extended from 60 nM to 0.66 mM for TPA.  相似文献   

14.
Li J  Huang M  Liu X  Wei H  Xu Y  Xu G  Wang E 《The Analyst》2007,132(7):687-691
The electrochemiluminescence (ECL) of tris(2,2'-bipyridyl)ruthenium(II) [Ru(bpy)(3)(2+)] ion-exchanged in the sulfonic-functionalized MCM-41 silicas was developed with tripropylamine (TPrA) as a co-reactant in a carbon paste electrode (CPE) using a room temperature ionic liquid (IL) as a binder. The sulfonic-functionalized silicas MCM-41 were used for preparing an ECL sensor by the electrostatic interactions between Ru(bpy)(3)(2+) cations and sulfonic acid groups. We used the IL as a binder to construct the CPE (IL-CPE) to replace the traditional binder of the CPE (T-CPE)--silicone oil. The results indicated that the MCM-41-modified IL-CPE had more open structures to allow faster diffusion of Ru(bpy)(3)(2+) and that the ionic liquid also acted as a conducting bridge to connect TPrA with Ru(bpy)(3)(2+) sites immobilized in the electrode, resulting in a higher ECL intensity compared with the MCM-41-modified T-CPE. Herein, the detection limit for TPrA of the MCM-41-modified IL-CPE was 7.2 nM, which was two orders of magnitude lower than that observed at the T-CPE. When this new sensor was used in flow injection analysis (FIA), the MCM-41-modified IL-CPE ECL sensor also showed good reproducibility. Furthermore, the sensor could also be renewed easily by mechanical polishing whenever needed.  相似文献   

15.
Zhang M  Ge S  Li W  Yan M  Song X  Yu J  Xu W  Huang J 《The Analyst》2012,137(3):680-685
In this work, we reported a simple and sensitive sandwich-type electrochemiluminescence (ECL) immunosensor for carcinoembryonic antigen (CEA) on a gold nanoparticles (AuNPs) modified glassy carbon electrode (GCE). The Ru-silica (Ru(bpy)(3)(2+)-doped silica) capped nanoporous gold (NPG) (Ru-silica@NPG) composite was used as an excellent label with amplification techniques. The NPG was prepared with a simple dealloying strategy, by which silver was dissolved from silver/gold alloys in nitric acid. The primary antibody was immobilized on the AuNPs modified electrode through l-cysteine and glutaraldehyde, and then the antigen and the functionalized Ru-silica@NPG composite labeled secondary antibody were conjugated successively to form a sandwich-type immunocomplex through the specific interaction. The concentrations of CEA were obtained in the range from 1 pg mL(-1) to 10 ng mL(-1) with a detection limit of 0.8 pg mL(-1). The as-proposed ECL immunosensor has the advantages of high sensitivity, specificity and stability and could become a promising technique for tumor marker detection.  相似文献   

16.
Lu X  Wang H  Du J  Huang B  Liu D  Liu X  Guo H  Xue Z 《The Analyst》2012,137(6):1416-1420
Electrochemiluminescence (ECL) of Ru(bpy)(3)(2+) using metabolites of catecholamines: homovanillic acid (HVA) and vanillylmandelic acid (VMA) as co-reactants were investigated in aqueous solution for the first time. When HVA and VMA were co-existent in the buffer solution containing Ru(bpy)(3)(2+), ECL peaks were observed at a potential corresponding to the oxidation of Ru(bpy)(3)(2+), and the ECL intensity was increased noticeably when the concentrations of HVA and VMA were at lower levels. The linear calibration range was from 8.0 × 10(-5) to 1.0 × 10(-9) M for HVA and VMA. The detection limit (S/N = 3) of HVA and VMA was 4.0 × 10(-10) M. The formation of the excited state Ru(bpy)(3)(2+*) was confirmed to result from the reaction between Ru(bpy)(3)(3+) and the intermediates of HVA or VMA radicals. Moreover, it was found that the ECL intensity was quenched significantly when the concentrations of HVA and VMA were relatively higher. The mechanism of self-quenching processes involved in the Ru(bpy)(3)(2+)-HVA and -VMA ECL systems are proposed in this study.  相似文献   

17.
The facile synthesis of the novel platinum nanoparticles/Eastman AQ55D/ruthenium(II) tris(bipyridine) (PtNPs/AQ/Ru(bpy)3(2+)) colloidal material for ultrasensitive ECL solid-state sensors was reported for the first time. The cation ion-exchanger AQ was used not only to immobilize ECL active species Ru(bpy)3(2+) but also as the dispersant of PtNPs. Colloidal characterization was accomplished by transmission electron microscopy (TEM), X-ray photoelectron spectrum (XPS), and UV-vis spectroscopy. Directly coating the as-prepared colloid on the surface of a glassy carbon electrode produces an electrochemiluminescence (ECL) sensor. The electronic conductivity and electroactivity of PtNPs in composite film made the sensor exhibit faster electron transfer, higher ECL intensity of Ru(bpy)3(2+), and a shorter equilibration time than Ru(bpy)3(2+) immobilized in pure AQ film. Furthermore, it was demonstrated that the combination of PtNPs and permselective cation exchanger made the sensor exhibite excellent ECL behavior and stability and a very low limit of detection (1 x 10(-15) M) of tripropylamine with application prospects in bioanalysis. This method was very simple, effective, and low cost.  相似文献   

18.
A new capillary electrophoresis-electrochemiluminescence (ECL) detection system equipped with an electrically heated Ru(bpy)(3)(2+)/multi-wall-carbon-nanotube paste electrode (Ru(bpy)(3)(2+)/MWNTPE) was developed. Ru(bpy)(3)(2+) was immobilized in the electrode by directly mixing with the multi-wall-carbon-nanotube paste (MWNTP). This modified electrode could be electrically heated and temperature of the electrode (Te) could be accurately controlled. Tri-n-propylamine (TPrA) was used as coreactant to investigate CE-ECL signals under different conditions. Compared with the conventional electrode at room temperature, the heated electrode has been shown to provide some advantages, such as higher sensitivity, lower RSD, and decreasing width of the peak. Furthermore, wider range of capillary-to-electrode distance and larger-area electrode are a benefit to CE-ECL. In addition, this system has been applied to separation and detection of acephate and dimethoate. The results indicated that the present CE-ECL system coupled with heated modified-electrode could provide high sensitivity, wide linear range, satisfying linear relationship and excellent reproducibility.  相似文献   

19.
Qiu H  Yin XB  Yan J  Zhao X  Yang X  Wang E 《Electrophoresis》2005,26(3):687-693
A simultaneous electrochemical (EC) and electrochemiluminescence (ECL) detection scheme was introduced to both microchip and conventional capillary electrophoresis (CE). In this dual detection scheme, tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)3(2+)) was used as an ECL reagent as well as a catalyst (in the formation of Ru(bpy)3(3+)) for the EC detection. In the Ru(bpy)3(2+)-ECL process, Ru(bpy)3(3+) was generated and then reacted with analytes resulting in an ECL emission and a great current enhancement in EC detection due to the catalysis of Ru(bpy)3(3+). The current response and ECL signals were monitored simultaneously. In the experiments, dopamine and three kinds of pharmaceuticals, anisodamine, ofloxacin, and lidocaine, were selected to validate this dual detection strategy. Typically, for the EC detection of dopamine with the presence of Ru(bpy)3(2+), a approximately 5 times higher signal-to-noise ratio (S/N) can be achieved than that without Ru(bpy)3(2+), during the simultaneous EC and ECL detection of a mixture of dopamine and lidocaine using CE separation. The results indicated that this dual EC and ECL detection strategy could provide a simple and convenient detection method for analysis of more kinds of analytes in CE separation than the single EC or ECL detection alone, and more information of analytes could be achieved in analytical applications simultaneously.  相似文献   

20.
Chen Y  Lin Z  Sun J  Chen G 《Electrophoresis》2007,28(18):3250-3259
An electrochemiluminescent (ECL) detection system in CE with an electrically heated carbon paste electrode (CPE) was developed. This CPE could be heated by a 100 kHz alternating current (ac) generated from a function generator, and the temperature of the electrode (Te) could be controlled. To evaluate the feasibility and reliability of this system, the electrochemically generated Ru(bpy)(3) (3+)-based ECL reaction was used for detection of triethylamine (TEA) and tri-n-propylamine (TPrA). Ru(bpy)(3) (2+) was added into the separation buffer solution with precolumn mode. Effects of several important factors were investigated to acquire the optimum conditions. Under the optimum conditions, the heated electrode has been shown to provide advantages by the measurement of ECL intensity in CE at elevated Te. Compared with the conventional electrode at the room temperature, using heated CPE could improve peak shape and gain good reproducibility with lower detection limits and wider linearity ranges. Compared with the room temperature, the linear ranges and detection limits (S/N = 3) for TEA and TPrA were improved about one magnitude when the Te was 39 degrees C. In contrast, the RSD was lower than for the electrode at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号