首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
设计了一种基于V型直线超声电机驱动的微液滴生成装置用于制备具有微米级尺寸的微液滴.此装置由基于V型直线超声电机驱动的微液滴生成部件、基于V型直线超声电机的三维位移控制平台和基于压电振子的微液滴分离部件组成.其中,生成部件包含超声电机、医用注射器、硅胶软管和自制的玻璃基微喷嘴.利用控制器驱动直线超声电机高精度地移动,由滑台推动注射器,在玻璃基喷嘴尖端产生附着的微小液滴;再利用压电振子激发杆状喷嘴的固有振型,使得附着的液滴克服粘性力从微喷嘴尖端分离,落在一定的范围内, 并计算生成的球形微液滴的半径.以蒸馏水作为初始液体,探究此装置生成的微液滴的特性.研究结果表明,蒸馏水在直线电机的精密驱动下,在微喷嘴尖端形成附着的球冠状液滴.通过分离部件的振动,附着的液滴克服自身的粘性力从喷嘴尖端分离, 形成球形液滴,通过测量得出此装置生成的球形液滴的半径小于40 μm.  相似文献   

2.
Niu X  Gulati S  Edel JB  deMello AJ 《Lab on a chip》2008,8(11):1837-1841
A novel method is presented for controllably merging aqueous microdroplets within segmented flow microfluidic devices. Our approach involves exploiting the difference in hydrodynamic resistance of the continuous phase and the surface tension of the discrete phase through the use of passive structures contained within a microfluidic channel. Rows of pillars separated by distances smaller than the representative droplet dimension are installed within the fluidic network and define passive merging elements or chambers. Initial experiments demonstrate that such a merging element can controllably adjust the distance between adjacent droplets. In a typical scenario, a droplet will enter the chamber, slow down and stop. It will wait and then merge with the succeeding droplets until the surface tension is overwhelmed by the hydraulic pressure. We show that such a merging process is independent of the inter-droplet separation but rather dependent on the droplet size. Moreover, the number of droplets that can be merged at any time is also dependent on the mass flow rate and volume ratio between the droplets and the merging chamber. Finally, we note that the merging of droplet interfaces occurs within both compressing and the decompressing regimes.  相似文献   

3.
流体在微流通道中形成剪切流场(低雷诺数).不同于宏观体系,由于剪切力和表面张力的竞争作用,产生的液滴在微尺度下的微流通道中形成特殊的排列现象---周期性类似“晶格”排列现象.设计了新型流动聚焦型微流控芯片,分析研究在微流体系中液滴周期性图案化排列和转变机理性,液滴排列模式受两方面因素影响:水油两相的流速比值和微通道尺寸.当微通道宽度为250或300 μm时,液滴形成单层分散,双层和单层挤压排列.当微通道宽度为350 μm 时,液滴会形成单层分散到三层排列到双层挤压最后到单层挤压排列.当出口通道宽度增加到400 μm时,甚至出现了液滴四层排列的现象.同时研究了各个液滴排列模式的“转变点”.  相似文献   

4.
Polymers containing droplets of liquid crystal smaller than 100 nm, which have good transparency and easily form films, were prepared under various conditions to evaluate their potential as electro-optic materials for waveguide-type devices. By varying the liquid crystal concentration and the strength of the UV irradiation causing photo-induced phase separation of the droplets, we were able to control the droplet size and density. We have clarified how the birefringence generated in an applied electric field, switching speed, and optical loss of light propagating in the film depend on droplet size and density. Polymer materials having a large electro-optic effect (δn = 0.001 at 8 V μm-1), low propagation loss (~2.5 dB cm-1), and fast response time (~10 μs) have been developed.  相似文献   

5.
Porous structures containing pores at different length scales are often encountered in nature and are important in many applications. While several processing routes have been demonstrated to create such hierarchical porous materials, most methods either require chemical gelation reactions or do not allow for the desired control of pore sizes over multiple length scales. We describe a versatile and simple approach to produce tailor-made hierarchical porous materials that relies solely on the process of drying. Our results show that simple drying of a complex suspension can lead to the self-assembly of droplets, colloidal particles and molecular species into unique 3D hierarchical porous structures. Using a microfluidic device to produce monodisperse templating droplets of tunable size, we prepared materials with up to three levels of hierarchy exhibiting monodisperse pores ranging from 10 nm to 800 μm. While the size of macropores obtained after drying is determined by the size of initial droplets, the interconnectivity between macropores is strongly affected by the type of droplet stabilizer (surfactants or particles). This simple route can be used to prepare porous materials of many chemical compositions and has great potential for creating artificial porous structures that capture some of the exquisite hierarchical features of porous biological materials.  相似文献   

6.
Fan SK  Hsu YW  Chen CH 《Lab on a chip》2011,11(15):2500-2508
A water-core and oil-shell encapsulated droplet exhibits several advantages including enhanced fluidic manipulation, reduced biofouling, decreased evaporation, and simplified device packaging. However, obtaining the encapsulated droplet with an adjustable water-to-oil volume ratio and a further removable oil shell is not possible by reported techniques using manual pipetting or droplet splitting. We report a parallel-plate device capable of generation, encapsulation, rinsing, and emersion of water and/or oil droplets to achieve three major aims. The first aim of our experiments was to form encapsulated droplets by merging electrowetting-driven water droplets and dielectrophoresis-actuated oil droplets whose volumes were precisely controlled. 25 nL water droplets and 2.5 nL non-volatile silicone oil droplets with various viscosities (10, 100, and 1000 cSt) were individually created from their reservoirs to form encapsulated droplets holding different water-to-oil volume ratios of 10:1 and 2:1. Secondly, the driving voltages, evaporation rates, and biofouling of the precise encapsulated droplets were measured. Compared with the bare and immersed droplets, we found the encapsulated droplets (oil shells with lower viscosities and larger volumes) were driven at a smaller voltage or for a wider velocity range. In the dynamic evaporation tests, at a temperature of 20 ± 1 °C and relative humidity of 45 ± 3%, 10 cSt 10:1 and 2:1 encapsulated droplets were moved at the velocity of 0.25 mm s(-1) for 22 and 35 min until losing 16.6 and 17.5% water, respectively, while bare droplets followed the driving signal for only 6 min when 11.4% water was lost. Evaporation was further diminished at the rate of 0.04% min(-1) for a carefully positioned stationary encapsulated droplet. Biofouling of 5 μg ml(-1) FITC-BSA solution was found to be eliminated by the encapsulated droplet from the fluorescent images. The third aim of our research was to remove the oil shell by dissolving it in an on-chip rinsing reservoir containing hexane. After emersion from the rinsing reservoir, the bare droplet was restored as hexane rapidly evaporated. Removal of the oil shell would not only increase the evaporation of the core droplet when necessary, but also enhance the signal-to-noise ratio in the following detection steps.  相似文献   

7.
Monodisperse poly(dl-lactic acid) (PLA) particles of diameters between 11 and 121 μm were fabricated in flow focusing glass microcapillary devices by evaporation of dichloromethane (DCM) from emulsion droplets at room temperature. The dispersed phase was 5% (w/w) PLA in DCM containing 0.1-2 mM Nile Red and the continuous phase was 5% (w/w) poly(vinyl alcohol) in reverse osmosis water. Particle diameter was 2.7 times smaller than the diameter of the emulsion droplet template, indicating very low particle porosity. Monodisperse droplets have only been produced under dripping regime using a wide range of dispersed phase flow rates (0.002-7.2 cm(3)·h(-1)), continuous phase flow rates (0.3-30 cm(3)·h(-1)), and orifice diameters (50-237 μm). In the dripping regime, the ratio of droplet diameter to orifice diameter was inversely proportional to the 0.39 power of the ratio of the continuous phase flow rate to dispersed phase flow rate. Highly uniform droplets with a coefficient of variation (CV) below 2% and a ratio of the droplet diameter to orifice diameter of 0.5-1 were obtained at flow rate ratios of 4-25. Under jetting regime, polydisperse droplets (CV > 6%) were formed by detachment from relatively long jets (between 4 and 10 times longer than droplet diameter) and a ratio of the droplet size to orifice size of 2-5.  相似文献   

8.
Using a microfluidic flow-focusing device, monodisperse water droplets in oil were generated and their interface populated by either 1 μm or 500 nm amine modified silica particles suspended in the water phase. The deformation and breakup of these Pickering droplets were studied in both pure extensional flow and combined extensional and shear flow at various capillary numbers using a microfluidic hyperbolic contraction. The shear resulted from droplet confinement and increased with droplet size and position along the hyperbolic contraction. Droplet deformation was found to increase with increasing confinement and capillary number. At low confinements and low capillary numbers, the droplet deformation followed the predictions of theory. For fully confined droplets, where the interface was populated by 1 μm silica particles, the droplet deformation increased precipitously and two tails were observed to form at the rear of the droplet. These tails were similar to those seen for surfactant covered droplets. At a critical capillary number, daughter droplets were observed to stream from these tails. Due to the elasticity of the particle-laden interface, these drops did not return to a spherical shape, but were observed to buckle. Although increases in droplet deformation were observed, no tail streaming occurred for the 500 nm silica particle covered droplets over the range of capillary numbers studied.  相似文献   

9.
Emulsions are commonly used in foods, pharmaceuticals and home-personal-care products. For emulsion based products, it is highly desirable to control the droplet size distribution to improve storage stability, appearance and in-use property. We report preparation of uniform-sized silicone oil microemulsions with different droplets diameters (1.4-40.0 μm) using SPG membrane emulsification technique. These microemulsions were then added into model shampoos and conditioners to investigate the effects of size, uniformity, and storage stability on silicone oil deposition on hair surface. We observed much improved storage stability of uniform-sized microemulsions when the droplets diameter was ≤22.7 μm. The uniform-sized microemulsion of 40.0 μm was less stable but still more stable than non-uniform sized microemulsions prepared by conventional homogenizer. The results clearly indicated that uniform-sized droplets enhanced the deposition of silicone oil on hair and deposition increased with decreasing droplet size. Hair switches washed with small uniform-sized droplets had lower values of coefficient of friction compared with those washed with larger uniform and non-uniform droplets. Moreover the addition of alginate thickener in the shampoos and conditioners further enhanced the deposition of silicone oil on hair. The good correlation between silicone oil droplets stability, deposition on hair and resultant friction of hair support that droplet size and uniformity are important factors for controlling the stability and deposition property of emulsion based products such as shampoo and conditioner.  相似文献   

10.
Bardin D  Martz TD  Sheeran PS  Shih R  Dayton PA  Lee AP 《Lab on a chip》2011,11(23):3990-3998
In this study we report on a microfluidic device and droplet formation regime capable of generating clinical-scale quantities of droplet emulsions suitable in size and functionality for in vivo therapeutics. By increasing the capillary number-based on the flow rate of the continuous outer phase-in our flow-focusing device, we examine three modes of droplet breakup: geometry-controlled, dripping, and jetting. Operation of our device in the dripping regime results in the generation of highly monodisperse liquid perfluoropentane droplets in the appropriate 3-6 μm range at rates exceeding 10(5) droplets per second. Based on experimental results relating droplet diameter and the ratio of the continuous and dispersed phase flow rates, we derive a power series equation, valid in the dripping regime, to predict droplet size, D(d) approximately equal 27(Q(C)/Q(D))(-5/12). The volatile droplets in this study are stable for weeks at room temperature yet undergo rapid liquid-to-gas phase transition, and volume expansion, above a uniform thermal activation threshold. The opportunity exists to potentiate locoregional cancer therapies such as thermal ablation and percutaneous ethanol injection using thermal or acoustic vaporization of these monodisperse phase-change droplets to intentionally occlude the vessels of a cancer.  相似文献   

11.
姬相玲 《高分子科学》2014,32(12):1646-1654
Porous polymer beads(PPBs) containing hierarchical bimodal pore structure with gigapores and meso-macropores were prepared by polymerization-induced phase separation(PIPS) and emulsion-template technique in a glass capillary microfluidic device(GCMD). Fabrication procedure involved the preparation of water-in-oil emulsion by emulsifying aqueous solution into the monomer solution that contains porogen. The emulsion was added into the GCMD to fabricate the(water-in-oil)-in-water double emulsion droplets. The flow rate of the carrier continuous phase strongly influenced the formation mechanism and size of droplets. Formation mechanism transformed from dripping to jetting and size of droplets decreased from 550 μm to 250 μm with the increase in flow rate of the carrier continuous phase. The prepared droplets were initiated for polymerization by on-line UV-irradiation to form PPBs. The meso-macropores in these beads were generated by PIPS because of the presence of porogen and gigapores obtained from the emulsion-template. The pore morphology and pore size distribution of the PPBs were investigated extensively by scanning electron microscopy and mercury intrusion porosimetry(MIP). New pore morphology was formed at the edge of the beads different from traditional theory because of different osmolarities between the water phase of the emulsion and the carrier continuous phase. The morphology and proportion of bimodal pore structure can be tuned by changing the kind and amount of porogen.  相似文献   

12.
A novel method is described for the measurement of the droplet size distributions produced by nebulizers commonly employed in analytical atomic spectroscopy. It is shown theoretically that, at sufficiently high concentrations of dissolved sodium chloride, the evaporation of water from droplets as small as 0.5 μm in diameter may be reduced to a negligible level. When evaporation is reduced by the presence of a dissolved salt, a conventional cascade impactor may be used to elucidate the droplet size distribution. Empirical observations confirm that, at a sodium concentration of 10,000 μg ml?1, evaporation is negligible: the method may be used to study particle size distributions over the size range 0.5–10 μm.  相似文献   

13.
We present a novel homogeneous (“mix‐incubate‐read”) droplet microfluidic assay for specific protein detection in picoliter volumes by fluorescence polarization (FP), for the first time demonstrating the use of FP in a droplet microfluidic assay. Using an FP‐based assay we detect streptavidin concentrations as low as 500 nM and demonstrate that an FP assay allows us to distinguish droplets containing 5 μM rabbit IgG from droplets without IgG with an accuracy of 95%, levels relevant for hybridoma screening. This adds to the repertoire of droplet assay techniques a direct protein detection method which can be performed entirely inside droplets without the need for labeling of the analyte molecules.  相似文献   

14.
We developed a microfluidic device to form monodisperse droplets with high productivity by anisotropic elongation of a thread flow, defined as a threadlike flow of a dispersed liquid phase in a flow of an immiscible, continuous liquid phase. The thread flow was anisotropically elongated in the depth direction in a straight microchannel with a step, where the microchannel depth changed. Consequently, the elongated thread flow was given capillary instability (Rayleigh-Plateau instability) and was continuously transformed into monodisperse droplets at the downstream area of the step in the microchannel. We examined the effects of the flow rates of the dispersed phase and the continuous phase on the droplet formation behavior, including the droplet diameter and droplet formation frequency. The droplet diameter increased as the fraction of the dispersed-phase flow rate relative to the total flow rate increased and was independent of the total flow rate. The droplet formation frequency proportionally increased with the total flow rate at a constant dispersed-phase flow rate fraction. These results are explained in terms of a mechanism similar to that of droplet formation from a cylindrical liquid thread flow by Rayleigh-Plateau instability. The microfluidic device described was capable of forming monodisperse droplets with a 160-microm average diameter and 3-microm standard deviation at a droplet formation frequency of 350 droplets per second from a single thread flow. The highest total flow rate achieved was 6 mL/h using the present device composed of a straight microchannel with a step. We also demonstrated parallel droplet formation by anisotropic elongation of multiple thread flows; the process was applied to form W/O and O/W droplets. The highly productive droplet formation process presented in this study is expected to be useful for future industrial applications.  相似文献   

15.
Phase separation is the thermodynamic process that explains how droplets form in multicomponent fluids. These droplets can provide controlled compartments to localize chemical reactions, and reactions can also affect the droplets' dynamics. This review focuses on the tight interplay between phase separation and chemical reactions, which originates from thermodynamic constraints. In particular, simple mass action kinetics cannot describe chemical reactions since phase separation requires non-ideal fluids. Instead, thermodynamics implies that passive chemical reactions reduce the complexity of phase diagrams and provide only limited control over the system's behavior. However, driven chemical reactions, which use external energy input to create spatial fluxes, can circumvent thermodynamic constraints. Such active systems can suppress typical droplet coarsening, control droplet size, and localize droplets. This review provides an extensible framework for describing active chemical reactions in phase separating systems, which forms a basis for improving control in technical applications and understanding self-organized structures in biological cells.  相似文献   

16.
The influence of electrostatically-induced heteroaggregation of oppositely charged lipid droplets on the rheology and stability of emulsions has been studied. 20 wt.% oil-in-water emulsions (pH 6) containing oppositely charged droplets were fabricated by mixing cationic lactoferrin-coated lipid droplets with anionic β-lactoglobulin-coated lipid droplets. Emulsions containing mixtures of droplets with different charges (positive or negative) and sizes (large or small) were prepared, and then their overall particle characteristics (ζ-potential and size) and rheology were measured. Emulsions formed by mixing positive droplets and negative droplets that were both relatively small (d(43) ≈ 0.3 μm) exhibited extensive flocculation and had paste-like properties at intermediate positive-to-negative particle ratios. On the other hand, emulsions formed by mixing positive droplets and negative droplets that were both relatively large (d(43) ≈ 3 μm) exhibited little aggregation and had relatively low viscosities at all particle ratios. Emulsions with small negative droplets and large positive droplets (or vice versa), exhibited some aggregation and viscosity enhancement at intermediate particle ratios. The presence of relatively high levels of protein in the aqueous phase of mixed emulsions reduced the level of droplet aggregation and viscosity enhancement observed, which was attributed to the ability of protein molecules to bind to droplet surfaces and neutralize their charges. Electrostatically-induced heteroaggregation of lipid droplets may be a useful means of controlling the physicochemical properties of emulsion-based products in the food, personal care, pharmaceutical and cosmetic industries.  相似文献   

17.
Single-chain surfactants usually emulsify and stabilize oily substances into droplets in an aqueous solution. Here, we report a coassembly system, in which single types of anionic or non-ionic surfactants emulsify a class of water-soluble nonamphiphilic organic salts with fused aromatic rings in aqueous solutions. The nonamphiphilic organic salts are in turn promoted to form droplets of water-based liquid crystals (chromonic liquid crystals) encapsulated by single-chain surfactants. The droplets, stabilized against coalescence by encapsulated in a layer (or layers) of single chain surfactants, are of both nonspherical tactoid (elongated ellipsoid with pointy ends) and spherical shapes. The tactoids have an average long axis of ~9 μm and a short axis of ~3.5 μm with the liquid crystal aligning parallel to the droplet surface. The spherical droplets are 5-10 μm in diameter and have the liquid crystal aligning perpendicular to the droplet surface and a point defect in the center. Cationic and zwitterionic surfactants studied in this work did not promote the organic salt to form droplets. These results illustrate the complex interplay of self-association and thermodynamic incompatibility of molecules in water, which can cause new assembly behavior, including potential formation of vesicles or other assemblies, from surfactants that usually form only micelles. These unprecedented tactoidal shaped droplets also provide potential for the fabrication of new soft organic microcapsules.  相似文献   

18.
Valley JK  Pei SN  Ningpei S  Jamshidi A  Hsu HY  Wu MC 《Lab on a chip》2011,11(7):1292-1297
A platform capable of seamlessly unifying both optoelectrowetting and optoelectronic tweezers is presented. This enables the user to manipulate aqueous droplets (with electrowetting) as well as individual particles within those droplets (with dielectrophoresis). The device requires no photolithography and droplet/particle manipulation can occur continuously over the entire surface of the device. Droplet and 10 μm polystyrene particle speeds of up to 8 mm s(-1) and 60 μm s(-1), respectively, are demonstrated. Particle concentration within, and subsequent splitting of, a droplet is performed resulting in average concentration efficiencies of 93%. Serial concentration is also demonstrated resulting in exponentially increasing particle concentrations and a 10× concentration increase. Finally, the platform is used to select a single cell out of a cohort and subsequently encapsulate it in its own aqueous droplet.  相似文献   

19.
Cho SK  Zhao Y  Kim CJ 《Lab on a chip》2007,7(4):490-498
This paper describes a concept of concentration and binary separation of particles and its experimental confirmations for digital microfluidics where droplets are driven by the mechanism of electrowetting-on-dielectric (EWOD). As a fundamental separation unit, a binary separation scheme is developed, separating two different types of particles in one droplet into two droplets, one type each. The separation scheme consists of three distinctive steps, each with their own challenges: (1) isolate two different types of particles by electrophoresis into two regions inside a mother droplet, (2) physically split the mother droplet into two daughter droplets by EWOD actuation so that each type of particle is concentrated in each daughter droplet, and (3) free the daughter droplets from the separation site by EWOD to ready them for follow-up microfluidic operations. By applying a similar procedure to a droplet containing only one type of particle, two daughter droplets of different particle concentrations can be created. Using negatively charged carboxylate modified latex (CML) particles, 83% of the total particles are concentrated in a daughter droplet. Successful binary separation is also demonstrated using negatively charged CML particles and no-charge-treated polystyrene particles. Despite the undesired vortex developed inside the mother droplet, about 70% of the total CML particles are concentrated in one daughter droplet while about 70% of the total polystyrene particles are concentrated in the other daughter droplet.  相似文献   

20.
《Chemical physics letters》2002,350(1-2):34-41
A method for determining aerosol size distributions by single laser-shot single droplet cavity enhanced Raman scattering (CERS) is presented. Droplets are illuminated with the tripled output from a Nd:YAG laser at 355 nm and the CERS fingerprint acquired with a spectrograph and CCD. Droplets with radii in the range 10–50 μm are probed. The extension of this to the determination of a distribution of droplet sizes is illustrated. We suggest that the CERS signature from water could be used to determine droplet size while the observation of Raman scattering from other constituents could be used to identify trace chemical constituents within water droplets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号