首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The highly abundant GTP binding protein elongation factor Tu (EF-Tu) fulfills multiple roles in bacterial protein biosynthesis. Phage-displayed peptides with high affinity for EF-Tu were selected from a library of approximately 4.7 x 10(11) different peptides. The lack of sequence homology among the identified EF-Tu ligands demonstrates promiscuous peptide binding by EF-Tu. Homolog shotgun scanning of an EF-Tu ligand was used to dissect peptide molecular recognition by EF-Tu. All homolog shotgun scanning selectants bound to EF-Tu with higher affinity than the starting ligand. Thus, homolog shotgun scanning can simultaneously optimize binding affinity and rapidly provide detailed structure activity relationships for multiple side chains of a polypeptide ligand. The reported peptide ligands do not compete for binding to EF-Tu with various antibiotic EF-Tu inhibitors, and could identify an EF-Tu peptide binding site distinct from the antibiotic inhibitory sites.  相似文献   

2.
Affinity selection of peptides displayed on phage particles was used as the basis for mapping molecular contacts between small molecule ligands and their protein targets. Analysis of the crystal structures of complexes between proteins and small molecule ligands revealed that virtually all ligands of molecular weight 300 Da or greater have a continuous binding epitope of 5 residues or more. This observation led to the development of a technique for binding site identification which involves statistical analysis of an affinity-selected set of peptides obtained by screening of libraries of random, phage-displayed peptides against small molecules attached to solid surfaces. A random sample of the selected peptides is sequenced and used as input for a similarity scanning program which calculates cumulative similarity scores along the length of the putative receptor. Regions of the protein sequence exhibiting the highest similarity with the selected peptides proved to have a high probability of being involved in ligand binding. This technique has been employed successfully to map the contact residues in multiple known targets of the anticancer drugs paclitaxel (Taxol), docetaxel (Taxotere) and 2-methoxyestradiol and the glycosaminoglycan hyaluronan, and to identify a novel paclitaxel receptor [1]. These data corroborate the observation that the binding properties of peptides displayed on the surface of phage particles can mimic the binding properties of peptides in naturally occurring proteins. It follows directly that structural context is relatively unimportant for determining the binding properties of these disordered peptides. This technique represents a novel, rapid, high resolution method for identifying potential ligand binding sites in the absence of three-dimensional information and has the potential to greatly enhance the speed of development of novel small molecule pharmaceuticals.  相似文献   

3.
We developed a screening procedure to identify ligands from a phage display random peptide library that are selective for circulating bone marrow derived cells homing to angiogenic tumors. Panning the library on blood outgrowth endothelial cell suspension in vitro followed by in vivo selection based on homing of bone marrow-bound phage to angiogenic tumors, yielded the peptide QFPPKLTNNSML. Upon intravenous injection phage displaying this peptide homed to Lewis lung carcinoma (LLC) tumors in vivo whereas control phage did not localize to tumor tissue. Phage carrying the QFPPKLTNNSML peptide labeled with ??Cu radionuclide when administered intravenously into a tumor bearing mouse was detected noninvasively with positron emission tomography (PET) around the tumor. These proof-of-principle experiments demonstrate the ability of the QFPPKLTNNSML peptide to deliver payload (radiolabeled phage conjugates) in vivo to sites of ongoing angiogenesis and point to its potential clinical utility in a variety of physiologic and pathologic processes where neovascular growth is a critical component.  相似文献   

4.
Binding sites in protein complexes occasionally map to small peptides within one or more proteins. Random peptide display methods simulate binding interactions by providing all possible peptide combinations with an equal opportunity to bind a protein of interest. The natural substrates for the protein are typically known in advance. However, it is often the case that such substrates are identified as putative partner proteins by using in vivo methods such as yeast two hybrid screening. Unfortunately, such methods often produce lengthy datasets of protein sequences and offer little mechanistic insight into how such interactions might take place in vivo. Here, we review an approach that addresses this problem. First, sequence alignment tools identify and characterize blocks of conserved sequences among peptides recovered during random peptide display. Next, searching programs detect similar blocks of conserved sequences within naturally occurring proteins to predict partner proteins. Finally, the significance of an interaction is tested using site specific mutagenesis, binding competition or co-immunoprecipitation experiments. This strategy should become increasingly powerful with the growing popularity of interaction studies, sequencing projects and microarray analyses in modern biology.  相似文献   

5.
Polypeptides for use in affinity chromatography of factor VIII were identified using phage display technology. Phage libraries were designed to express polypeptide fusions containing five to seven residues flanked by two cysteines that form a disulfide bond. Individual bacteriophage were selected for the ability of these polypeptides to bind factor VIII, and then release the protein under mild elution conditions. Strong consensus sequences were observed that appear to be necessary for this reversible interaction. Chemically synthesized ligands identified by this screening were immobilized onto a chromatographic support and used for affinity purification of factor VIII from a complex feedstream. A chromatographic step was developed that provided a 10000-fold reduction in host cell proteins and DNA, while providing exceptional product recovery.  相似文献   

6.
Phage display of peptide libraries has become a powerful tool for the evolution of novel ligands that bind virtually any protein target. However, the rules governing conformational preferences in natural peptides are poorly understood, and consequently, structure-activity relationships in these molecules can be difficult to define. In an effort to simplify this process, we have investigated the structural stability of 10-residue, disulfide-constrained beta-hairpins and assessed their suitability as scaffolds for beta-turn display. Using disulfide formation as a probe, relative free energies of folding were measured for 19 peptides that differ at a one strand position. A tryptophan substitution promotes folding to a remarkable degree. NMR analysis confirms that the measured energies correlate well with the degree of beta-hairpin structure in the disulfide-cyclized peptides. Reexamination of a subset of the strand substitutions in peptides with different turn sequences reveals linear free energy relationships, indicating that turns and strand-strand interactions make independent, additive contributions to hairpin stability. Significantly, the tryptophan strand substitution is highly stabilizing with all turns tested, and peptides that display model turns or the less stable C'-C' ' turn of CD4 on this tryptophan "stem" are highly structured beta-hairpins in water. Thus, we have developed a small, structured beta-turn scaffold, containing only natural L-amino acids, that may be used to display peptide libraries of limited conformational diversity on phage.  相似文献   

7.
Ru B  Huang J  Dai P  Li S  Xia Z  Ding H  Lin H  Guo F  Wang X 《Molecules (Basel, Switzerland)》2010,15(11):8279-8288
Peptides selected from phage-displayed random peptide libraries are valuable in two aspects. On one hand, these peptides are candidates for new diagnostics, therapeutics and vaccines. On the other hand, they can be used to predict the networks or sites of protein-protein interactions. MimoDB, a new repository for these peptides, was developed, in which 10,716 peptides collected from 571 publications were grouped into 1,229 sets. Besides peptide sequences, other important information, such as the target, template, library and complex structure, was also included. MimoDB can be browsed and searched through a user-friendly web interface. For computational biologists, MimoDB can be used to derive customized data sets and benchmarks, which are useful for new algorithm development and tool evaluation. For experimental biologists, their results can be searched against the MimoDB database to exclude possible target-unrelated peptides. The MimoDB database is freely accessible at http://immunet.cn/mimodb/.  相似文献   

8.
Genetic engineering allows modification of bacterial and bacteriophage genes, which code for surface proteins, enabling display of random peptides on the surface of these microbial vectors. Biologic peptide libraries thus formed are used for high-throughput screening of clones bearing peptides with high affinity for target proteins. There are reports of many successful affinity selections performed with phage display libraries and substantially fewer cases describing the use of bacterial display systems. In theory, bacterial display has some advantages over phage display, but the two systems have never been experimentally compared. We tested both techniques in selecting streptavidin-binding peptides from two commercially available libraries. Under similar conditions, selection of phage-displayed peptides to model protein streptavidin proved convincingly better.  相似文献   

9.
10.
A random phosphopeptide probe (bio-pYZZZ) has been used for the isolation and identification of multiple SH2 domains from human cDNA-displaying phage libraries. In addition, on-phage analysis and quantification of binding affinities for these phage-displayed proteins has shown them to be functional domains, retaining the same characteristics as in their native state.  相似文献   

11.
12.
Bacteriophage (phage) display has been exploited for the purpose of discovering new cancer specific targeting peptides. However, this approach has resulted in only a small number of tumor targeting peptides useful as in vivo imaging agents. We hypothesize that in vivo screening for tumor uptake of fluorescently tagged phage particles displaying multiple copies of an in vivo selected tumor targeting peptide will expedite the development of peptide based imaging agents. In this study, both in vivo selection and in vivo screening of phage displaying foreign peptides were utilized to best predict peptides with the pharmacokinetic properties necessary for translation into efficacious in vivo imaging agents. An in vivo selection of phage display libraries was performed in SCID mice bearing human PC-3 prostate carcinoma tumors. Eight randomly selected phage clones and four control phage clones were fluorescently labeled with AlexaFluor 680 for subsequent in vivo screening and analyses. The corresponding peptides of six of these phage clones were tested as 111In-labeled peptide conjugates for single photon emission computed tomography (SPECT) imaging of PC-3 prostate carcinomas. Two peptide sequences, G1 and H5, were successful as in vivo imaging agents. The affinities of G1 and H5 peptides for cultured PC-3 cells were then analyzed via cell flow cytometry resulting in Kd values of 1.8 μM and 2.2 μM, respectively. The peptides bound preferentially to prostate tumor cell lines compared to that of other carcinoma and normal cell lines, and H5 appeared to possess cytotoxic properties. This study demonstrates the value of in vivo screening of fluorescently labeled phage for the prediction of the efficacy of the corresponding 111In-labeled synthetic peptide as an in vivo SPECT tumor imaging agent.  相似文献   

13.
Phage display is a powerful technique that enables easy identification of targets for any type of ligand. Targets are displayed at the phage surface as a fusion protein to one of the phage coat proteins. By means of a repeated process of affinity selection on a ligand, specific enrichment of displayed targets will occur. In our studies using C-terminal display of cDNA fragments to phage coat protein p6, we noticed the occasional enrichment of targets that do not contain an open reading frame. This event has previously been described in other phage display studies using N-terminal display of targets to phage coat proteins and was due to uncommon translational events like frameshifting. The aim of this study was to examine if C-terminal display of targets to p6 is also subjected to frameshifting. To this end, an enriched target not containing an open reading frame was selected and an E-tag was coupled at the C-terminus in order to measure target display at the surface of the phage. The tagged construct was subsequently expressed in 3 different reading frames and display of both target and E-tag measured to detect the occurrence of frameshifting. As a result, we were able to demonstrate display of the target both in the 0 and in the +1 reading frame indicating that frameshifting can also take place when C-terminal fusion to minor coat protein p6 is applied.  相似文献   

14.
Using phage display technology, a 22-mer peptide was selected as a ligand with unique specificity for the murine monoclonal ST2146 antibody that recognizes the EGF repeats region of the human tumor-associated antigen tenascin-C. This peptide, synthesized in an 8-branched form to enhance its binding properties, is useful in replacing the native antigen in the affinity and immunoreactivity characterization of the ST2146 antibody and its biotinylated derivatives. Affinity resins, prepared by immobilizing the mimotope or its shorter 10-mer binding unit on a chromatographic support, were able to capture ST2146 directly from the hybridoma supernatant, with antibody recovery and host cell protein (HCP) reduction similar to or better than protein A sorbent, a purity degree exceeding 95%, and full recovery of antibody activity. The affinity constants of both peptides, as determined by frontal analysis of broad-zone elution affinity chromatography and BiaCore measurements, were very similar and included in a range suitable for affinity ligands. Column capacity, determined by applying a large excess of purified ST2146 to 1 mL of column bed volume, was close to 50 mg/mL for both resins. These matrices retain their ST2146 binding properties after various treatments, including sanitization, thus indicating very high stability in terms of ligand leakage and degradation. Moreover, the short form shows higher enzymatic stability, thus proving more suitable as ligand for ST2146 affinity purification.  相似文献   

15.
16.
We had developed a technology for creation of recombinant polyclonal antibody libraries, standardized perpetual mixtures of polyclonal whole antibodies for which the genes are available and can be altered as desired. We report here the first phase of generating a polyclonal antibody library to Cryptosporidium parvum, a protozoan parasite that causes severe disease in AIDS patients, for which there is no effective treatment. BALB/c mice, immunized by neonatal oral infection with oocysts followed by intraperitoneal immunization with a sporozoite/oocyst preparation of C. parvum, were used for construction of a Fab phage display library in a specially-designed bidirectional vector. This library was selected for reactivity to an oocyst/sporozoite preparation, and was shown to be antigen-specific and diverse. Following mass transfer of the selected variable region gene pairs to appropriate mammalian expression vectors, such anti-C. parvum Fab phage display libraries could be used to develop chimeric polyclonal antibody libraries, with mouse variable regions and human constant regions, for passive immunotherapy of C. parvum infection.  相似文献   

17.
Single-walled carbon nanohorns (SWNHs) are interesting carbon nanostructures that have applications to science and technology. Using M13 phage display technology, polypeptides directed again SWNHs surfaces have been created for a number of nanotechnology and pharmaceutical purposes, yet the molecular mechanism of polypeptide sequence interaction and binding to SWNHs surfaces is not known. Recently, we identified a linear 12-AA M13 phage pIII sequence, NH-12-5-2 (DYFSSPYYEQLF), that binds with high affinity to SWNHs surfaces. To probe the structure of this pIII tail polypeptide further, we investigated the conformation of a model peptide representing the 12 AA NH-12-5-2 sequence. At neutral pH, the NH-12-5-2 model polypeptide is conformationally labile and exhibits two-state conformational exchange involving the D1-S5 N-terminal segment. Simultaneous with this conformational exchange process is the observation that the P6 residue exhibits imido ring conformational variation. In the presence of the structure-stabilizing solvent, TFE, or at pH 2.5, both the exchange process and Pro ring motion phenomena disappear, indicating that the structure of this peptide sequence can be stabilized by extrinsic factors. Interestingly, we observe NMR parameters (ROEs, (3)J coupling constants) for NH-12-5-2 in 90% v/v TFE that are consistent with the presence of a partial helical structure, similar to what was observed at low pH in our earlier CD experiments. We conclude that the NH-12-5-2 model polypeptide sequence possesses an inherent conformational instability that involves the D1-S5 sequence segment and the P6 residue but that this instability can be offset by extrinsic factors (e.g., charge neutralization, imido ring interconversion, and hydrophobic-hydrophobic interactions). These nonbonding interactions may play a role in the recognition and binding of this phage sequence region to SWNHs surfaces.  相似文献   

18.
19.
In this study, using mycotoxin deoxynivalenol (DON) as a model hapten, we developed a nanobody-based environmental friendly immunoassay for sensitive detection of DON. Two nanobodies (N-28 and N-31) which bind to anti-DON monoclonal antibody (MAb) were isolated from a naive phage display library. These nanobodies are clonable, thermally stable and mycotoxin-free products and can be served as coating antigen mimetics in heterologous immunoassay. The half inhibition concentration (IC50) of the immunoassay developed with N-28 and N-31 was 8.77 ± 0.41 ng mL−1 and 19.97 ± 0.84 ng mL−1, respectively, which were 18- and 8-fold more sensitive than the conventional coating antigen (DON-BSA) based immunoassay. In order to better understand the molecular mechanism of antigen mimicry by nanobody, the 3D structure of “nanobody (N-28) - anti-DON MAb” complex was presented and verified by molecular modeling and alanine-scanning mutagenesis. The results showed that hydrogen bond and hydrophobic interaction formed between Thr 102 – Ser 106 of N-28 and CDR H3 residues of anti-DON antibody may contribute to their binding. This novel concept of enhancing sensitivity of immunoassay for DON based on nanobody may provide potential applications in a general method for immunoassay of various food chemical contaminants.  相似文献   

20.
The coiled-coil, which consists of two or more interwoven amphiphilic alpha-helices, is formed by sequences that have a characteristic heptad repeat (abcdefg) where a and d are hydrophobic residues. Most efforts to elucidate the origins of coiled-coil pairing selectivity have focused on electrostatic interactions among side chains that flank the core (positions e and g) and on polar side chains that occur occasionally at core positions. We have used phage display to explore another source of coiled-coil specificity: steric matching among nonpolar side chains in the core. We introduced a destabilizing Leu-->Ala mutation into the core of one helix in a known heterodimer and then screened a phage-based library of potential partner helices in search of compensating mutations. We identified a new heterodimer pair (30 residues/helix) that is comparable in stability to the GCN4-p1 homodimer (33 residues/helix). Furthermore, the Leu-->Ala mutant shows specificity for its phage-derived partner over the original partner despite their similar sequences. These results show that a phage-based approach can provide unique insights on coiled-coil pairing preferences that should facilitate both the analysis of natural sequences and the development of specific dimerization motifs that are orthogonal to one another.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号