首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipophilic carriers have shown great potential in improving the delivery of gene therapeutics. We have synthesized positively charged peptide-based carriers including lipoamino acids. The carriers were shown to interact with DNA by performing isothermal titration calorimetry and particle size and zeta potential experiments. An exothermic reaction resulted from the titration of carrier into DNA. The particle sizes of the carrier/DNA complexes varied over the different charge ratios from 200-800 nm. The zeta potential was negative at a low charge ratio but positive when the amount of carrier was increased. The utilisation of lipophilic carriers is a promising approach to improve the bioavailability of gene delivery.  相似文献   

2.
Biodegradable cationic nanoparticles (cNP) made of poly(lactide) (PLA) have been shown to be promising carrier systems for in vivo DNA delivery and immunization. In previous work, we have described a versatile approach for the elaboration of cationic PLA cNP based on the use of pre-formed particles and subsequent adsorption of a model polycation, the poly(ethylenimine) (PEI). Here, we evaluated two more polycations, chitosan and poly(2-dimethyl-amino)ethyl methacrylate (pDMAEMA)) to determine the most suitable one for the development of PLA cNP as DNA carriers. Cationic PLA-PEI, PLA-chitosan and PLA-pDMAEMA nanoparticles were compared for interaction with plasmid DNA and, more importantly, with regards to the biological properties of bound DNA. pDMAEMA coating yielded the most positively charged nanoparticles with the highest DNA binding capacity (32 mg/g). Loaded with DNA, all three cNP were in the same size range ( approximately 500 nm) and had a negative zeta potential (-50 mV). PLA-chitosan was the only cNP that released DNA at pH 7; the two others required higher pH. Adsorption and release from cNP did not alter structural and functional integrity of plasmid DNA. Moreover, DNA coated onto cNP was partially protected from nuclease degradation, although this protection was less efficient for PLA-chitosan than others. The highest transfection efficiency in cell culture was obtained with PLA-pDMAEMA carriers. We have shown that at least three different cationic polymers (chitosan, PEI, pDMAEMA) can be used for the production of PLA-based particulate DNA carriers and most probably other cationic polymers can also be used in the same purpose. PLA-pDMAEMA cNP were the most promising system for DNA delivery in this in vitro study. Our future work will focus on the in vivo evaluation of these gene delivery systems.  相似文献   

3.
A versatile family of cationic methacrylate copolymers containing varying amounts of primary and tertiary amino side groups were synthesized and investigated for in vitro gene transfection. Two different types of methacrylate copolymers, poly(2‐(dimethylamino)ethyl methacrylate)/aminoethyl methacrylate [P(DMAEMA/AEMA)] and poly(2‐(dimethylamino)ethyl methacrylate)/aminohexyl methacrylate [P(DMAEMA/AHMA)], were obtained by reversible addition‐fragmentation chain transfer (RAFT) copolymerization of dimethylaminoethyl methacrylate (DMAEMA) with N‐(tert‐butoxycarbonyl)aminoethyl methacrylate (Boc‐AEMA) or N‐(tert‐butoxycarbonyl)aminohexyl methacrylate (Boc‐AHMA) followed by acid deprotection. Gel permeation chromatography (GPC) measurements revealed that Boc‐protected methacrylate copolymers had Mn in the range of 16.1–23.0 kDa and low polydispersities of 1.12–1.26. The copolymer compositions were well controlled by monomer feed ratios. Dynamic light scattering and agarose gel electrophoresis measurements demonstrated that these PDMAEMA copolymers had better DNA condensation than PDMAEMA homopolymer. The polyplexes of these copolymers revealed low cytotoxicity at an N/P ratio of 3/1. The in vitro transfection in COS‐7 cells in serum free medium demonstrated significantly enhanced (up to 24‐fold) transfection efficiencies of PDMAEMA copolymer polyplexes as compared with PDMAEMA control. In the presence of 10% serum, P(DMAEMA/AEMA) and P(DMAEMA/AHMA) displayed a high transfection activity comparable with or better than 25 kDa PEI. These results suggest that cationic methacrylate copolymers are highly promising for development of safe and efficient nonviral gene transfer agents. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2869–2877, 2010  相似文献   

4.
We recently reported the parallel synthesis of 140 degradable poly(beta-amino esters) via the conjugate addition of 20 primary or secondary amine monomers to seven different diacrylate monomers. To explore possible structure/function relationships and further characterize this class of materials, we investigated the ability of each DNA-complexing polymer to overcome important cellular barriers to gene transfer. The majority of vectors were found to be uptake-limited, but complexes formed from polymers B14 and G5 displayed high levels of internalization relative to "naked" DNA (18x and 32x, respectively). Effective diameter and zeta potential measurements indicated that, in general, small particle size and positive surface charge led to higher internalization rates. Of the 10 DNA/polymer complexes with the highest uptake levels, all had effective diameters less than 250 nm and nine had positive zeta potentials. Lysosomal trafficking was investigated by measuring the pH environment of delivered DNA. Complexes prepared with polymers G5, G10, A13, B13, A14, and B14 were found to have near neutral pH measurements, suggesting that they were able to successfully avoid trafficking to acidic lysosomes. This work highlights the value of parallel synthesis and screening approaches for the discovery of new polymers for gene delivery and the elucidation of structure/function relationships for this important class of materials.  相似文献   

5.
Cationic Re(V) oxo compounds of the type [ReO(OSiMe3)(eta 2-B(pz)4)(L)2]X [X = Cl, L = 4-(NMe2)C5H4N (1), 1-Meimz (1-methylimidazole; 2), 1/2 dmpe (1,2-bis(dimethylphosphino)ethane; 3), py (4a); X = I, L = py (4b)] can be prepared by reacting trans-[ReO2(eta 2-B(pz)4)(L)2] with XSiMe3. In solution, cations 1-4 are reactive species, and those with unidentate nitrogen donor ligands (1, 2, and 4) rearrange into the neutral derivatives [ReO(Cl)(OSiMe3)(eta 2-B(pz)4)(L)] [L = py (5), 4-(NMe2)C5H4N (6), 1-Meimz (7)], which are also reported herein. Compounds 1-3 and 5-7 have been fully characterized by the usual spectroscopic techniques, which in some cases includes X-ray crystallographic analysis (3, 6, and 7). Compound 3 crystallizes from CH2Cl2/n-hexane as yellow crystals with one molecule of CH2Cl2 solvent, and compounds 6 and 7 crystallize from THF/n-hexane as violet and red crystals, respectively, with one molecule of THF solvent in the case of 6. Crystallographic data: 3, orthorhombic space group Pn2(1)a, a = 11.311(2) A, b = 19.135(2) A, c = 15.443(2) A, V = 3342.4(8) A3, Z = 4; 6, triclinic space group P1, a = 8.7179(11) A, b = 12.5724(8) A, c = 17.750(2) A, alpha = 70.454(7) degrees, beta = 77.935(9) degrees, gamma = 77.129(8) degrees, V = 1768.1(3) A3, Z = 2; 7, monoclinic space group P2(1)/c, a = 16.356(2) A, b = 20.384(3) A, c = 17.360(3) A, beta = 106.971(12) degrees, V = 5535.8(14) A3, Z = 8.  相似文献   

6.
A method for substrate-mediated reverse gene transfection was developed using a silica film composed of an upright-sheet network. The silica film with a dense upright-sheet network shows approximately double higher transgene expression efficiency than that of solution-based transfection.  相似文献   

7.
Gene therapy has attracted much attention in vascular tissue engineering. However, it is still challenging to develop a novel gene carrier with multifunction to overcome the barriers in gene delivery. Herein, the multitargeting gene complexes were developed based on methoxy‐poly(ethylene glycol)‐b‐poly‐(D,L‐lactide‐co‐glycolide) (mPEG‐b‐PLGA), poly(d ,l ‐lactide‐co‐glycolide)‐g‐polyethylenimine‐g‐CAGW (PLGA‐g‐PEI‐g‐CAGW), cell‐penetrating peptide YGRKKRRQRRR (TAT), nuclear localization signals (NLS), and pEGFP‐ZNF580 (pDNA) with the purpose of enhancing the transfection of endothelial cells (ECs). The low cytotoxic multitargeting gene complexes could be easily prepared by adjusting the weight ratio of mPEG‐b‐PLGA and PLGA‐g‐PEI‐g‐CAGW. Meanwhile, CAGW peptide with selectively ECs‐targeting ability and TAT‐NLS peptide sequence with both cell‐penetrating ability and nuclear targeting capacity were simultaneously introduced into gene complexes in order to enable them with the multitargeting function so as to improve their gene delivery capacity. The pDNA loading capacity of these gene complexes was confirmed by agarose gel electrophoresis assay. MTT results demonstrated that the relatively cell viability of the multitargeting gene complexes was higher than those of other groups. These multitargeting gene complexes showed higher internalization and transfection efficiencies than other groups. These results revealed that CAGW and TAT‐NLS peptide sequences benefited for efficient gene delivery. Furthermore, the wound healing assay demonstrated that the multitargeting gene complexes could promote the proliferation and migration of ECs. These results collectively demonstrated that CAGW and TAT‐NLS peptides functionalized gene delivery system could effectively enhance the transfection of ECs, which has great potential in vascular tissue engineering.  相似文献   

8.
Design and development of efficient non-viral gene delivery systems is critical to overcome various barriers for effective intracellular gene delivery.Eight new spermine-based protonatable surfactants were designed,synthesized and evaluated as non-viral pH-sensitive gene carriers.These carriers formed stable complexes with plasmid DNA at an N/P ratio as low as 2.The sizes of the carrier/pDNA nanoparticles (N/P = 12) were in the range of 90–130 nm,smaller than that of Lipofectamine2000/pDNA nanoparticles.The...  相似文献   

9.
Niosomes have shown promise as cheap and chemically stable drug delivery systems. In this paper a novel crown ether amphiphile, 1,16-hexadecanoyl-bis-(2-aminomethyl)-18-crown-6 (Bola A-16), has been synthesized with the aim of developing a long time stable controlled release system. Niosomes have been prepared with different molar ratios of amphiphile and cholesterol and their morphological properties have been determined by quasi-elastic light scattering and transmission electron microscopy. The composition of niosomes affects the entrapment efficiency and the release rate of 5-fluorouracil, a well-known antineoplastic molecule. In addition, other two known azacrown ether amphiphiles (4,7,10,13-pentaoxa-16-aza-cyclooctadecane)-hexadecanedioc acid diamide (Bola D-16) and ,ω-(4,7,10,13-pentaoxa-16-aza-cyclooctadecane)-hexadecane (Bola C-16), have been synthesized and the obtained vesicles have been characterized for comparison. Furthermore, the release profile of 5-fluorouracil in vitro, from these niosomes, has been studied over a period of 6 h in order to simulate a hematic adsorption.  相似文献   

10.
Two cationic polyfluorene derivatives, quaternary amine 1 and guanidine 2 sheathed systems, were prepared as potential carriers to mediate import of proteins into cells without requiring covalent attachment to the protein. Neither polymer showed significant cytotoxicities (IC(50) 100 μM) when exposed to Clone 9 rat liver cells. Both polymers were shown to mediate import of a series of four proteins chosen because they have different pI values, sizes, and variable organic fluor attachments. Once inside the cells, the quaternary amine system 1 released more of its cargo into regions outside the lysosomes. In one exploratory experiment, pyrenebutyrate was shown to accelerate import of a protein system by polymer 1.  相似文献   

11.
Amphiphilic dendrimer-based gene delivery vectors bearing peripheral alkyl sulfonyl hydrophobic tails were constructed using low-generation PAMAM-G2 as the core and functionalized by means of the aza-Michael type addition of its primary amino groups to vinylsulfone derivatives as an efficient tool for surface engineering. While the unmodified PAMAM-G2 was unable to efficiently transfect eukaryotic cells, functionalized PAMAM-G2 dendrimers were able to bind DNA at low N/P ratios, protect DNA from digestion with DNase I and showed high transfection efficiencies and low cytotoxicity. Dendrimers with a C18 alkyl chain produced transfection efficiencies up to 3.1 fold higher than LipofectAMINE? 2000 in CHO-k1 cells. The dendriplexes based in functionalized PAMAM-G2 also showed the ability to retain their transfection properties in the presence of serum and the ability to transfect different eukaryotic cell lines such as Neuro-2A and RAW 264.7. Taking advantage of the vinylsulfone chemistry, fluorescent PAMAM-G2 derivatives of these vectors were prepared as molecular probes to determine cellular uptake and internalization through a clathrin-independent mechanism.  相似文献   

12.
We describe here the synthesis of a novel magnetic drug-targeting carrier characterized by a core-shell structure. The core-shell carrier combines the advantages of a magnetic core and the stimuli-responsive property of the thermosensitive biodegradable polymer shell (e.g., an on-off mechanism responsive to external temperature change). The composite nanoparticles are approximately 8 nm in diameter with approximately 3 nm shell. The lower critical solution temperature (LCST) is approximately 38 degrees C as determined by UV-vis absorption spectroscopy. The carrier is composed of cross-linked dextran grafted with a poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide) [dextran-g-poly(NIPAAm-co-DMAAm)] shell and superparamagnetic Fe3O4 core. Fourier transform infrared spectroscopy (FTIR) confirmed the composition of the carrier. The synthesized magnetic carrier system has potential applications in magnetic drug-targeting delivery and magnetic resonance imaging.  相似文献   

13.
A novel kind of pH‐sensitive brush copolymer [poly(2‐hydroxyethyl methacrylate)‐graft‐poly(ethylethylene phosphate)]‐block‐poly[2‐(dimethylamino)ethyl methacrylate] [(PHEMA‐g‐PEEP)‐b‐PDMAEMA] with biodegradable polyphosphoester as the side chains, and its self‐assembled aggregates were developed for nonviral gene delivery. The brush copolymers were synthesized via a combination of single‐electron transfer living radical polymerization and ring‐opening polymerization. The chemical structures of these brush copolymers were characterized by FTIR, 1H NMR, and 31P NMR measurements. The critical aggregation concentration values of (PHEMA‐g‐PEEP)‐b‐PDMAEMA in pH 7.4 buffer solution were determined by the fluorescence probe technique. The interaction of (PHEMA‐g‐PEEP)‐b‐PDMAEMA and DNA was studied by agarose gel retardation assay, and the formed complexes were further investigated by means of zeta potential, dynamic light scattering, and transmission electron microscopy measurements. In addition, the in vitro cytotoxicity and transfection tests indicated that these brush copolymers showed low toxicity and favorable transfection efficiency to HeLa cells. All these results demonstrated that these biocompatible brush copolymers may be a promising candidate as nonviral polymeric gene vector. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

14.
The objective of this work was to optimize the synthesis procedure of soluble cyclodextrin polymers developed by Weltrowski et al. The use of the parameters indicated by the latter in our laboratory led to a lower result, which did not exceed 15 % (w/w). The new method resulted simultaneously in two fractions, a water soluble one and an insoluble one with a yield of 40 and 85 % (w/w), respectively. Only soluble cyclodextrin polymers were characterized along with the cytotoxicity study. The optimized soluble polymers were characterized by Fourier-Transform Infrared Spectrophotometer, Thermogravimetric Analyzer, Differential Scanning Calorimetry, Powder X-Ray Diffraction Analysis and Size Exclusion Chromatography. In vitro cytotoxicity against peritoneal macrophage cells of female CD1 mice showed that soluble poly-α-CD and poly-γ-CD were less cytotoxic than soluble poly-β-CD at small dose and the opposite was true at higher dose. In conclusion, temperature and time could be used to optimize the yield of polymer cyclodextrins, which will have a broad use in the drug delivery system.  相似文献   

15.
Amphiphilic fluorescent graft copolymer (PVP‐PyATAm) was successfully synthesized by the free radical copolymerizations of hydrophobic monomer N‐acryloyl‐thioureylene‐4‐(1‐pyrene)‐butyryl amide (PyATAm) with hydrophilic precursor polymers of vinyl‐functionalized poly (N‐vinylpyrrolidone) (Acryloyl‐PVP) in DMF. FT‐IR, 1H NMR, TEM, gel permeation chromatography‐multi‐angle laser light scattering, UV‐vis spectroscopy, viscometric measurement, and fluorescence spectroscopy were used to characterize this copolymer. The TEM observation showed that the copolymer PVP‐ PyATAm formed spherical micelles in an aqueous solution and the size of micelles was between 50 and 70 nm in diameter. The interaction of PVP‐PyATAm copolymer and plasmid DNA was examined by agarose gel electrophoresis and TEM. Results indicated that the copolymer–DNA complexes were self‐assembled and the size of complexes was between 90 and 120 nm in diameter. Cytotoxity studies using MTT colorimetric assays suggested good biocompatibility of PVP‐PyATAm in vitro. These results suggested the potential of this graft copolymer as gene delivery carrier. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
This study sought to evaluate the in vitro transfection efficiency of plasmid DNA (pDNA)-loaded chitosan-modified poly(DL-lactide-co-glycolide) nanospheres (CS-PLGA NS) in a gene-delivery system. Using the emulsion solvent diffusion (ESD) method, pDNA-loaded PLGA NS was prepared and the surface of the PLGA NS was modified by binding to CS. Gene transfection ability of CS-PLGA NS was examined in A549 cells. The luciferase gene was used as a reporter gene. The pattern of luciferase activity by pDNA-loaded CS-PLGA NS was initially weak, but gradually grew stronger before decreasing activity. These phenomena should be in accordance with the sustained-release profile of pDNA from PLGA NS in the cytosol and the pDNA protection against DNase. Positively charged CS-PLGA NS was found, by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay, not to exhibit cytotoxicity on A549 cells. These results suggest that CS-PLGA NS are potential contributors to efficient pDNA delivery due to their increased interactions with cells and lack of cytotoxic effects.  相似文献   

17.
Polymer science is playing an exciting role in inspiring and advancing novel discoveries in the area of genetic drug delivery. Polymeric materials can be synthesized and chemically tailored to bind and compact nucleic acids into viral‐like nanoparticles termed polyplexes that can deliver genetic materials into cells. This article highlights our work in this area to synthesize and study a novel class of cationic glycopolymers that we have termed poly(glycoamidoamine)s (PGAAs). The design of these materials has been inspired by many previous works in the literature. Carbohydrate comonomers have been incorporated into these structures to lower the toxicity of the delivery vehicle, and oligoamine moieties have been added to yield a cationic backbone that facilitates strong DNA binding, compaction, cellular uptake, and delivery of genetic material. PGAAs have been designed to vary in the carbohydrate size, the hydroxyl number and stereochemistry, the amine number, and the presence or absence of heterocyclic groups. Through structure–bioactivity studies, we have discovered that these materials are highly biocompatible, and each specific feature plays a large role in the observed delivery efficacy. Such structure–property studies are important for increasing our understanding of how the polymer chemistry affects the biological activity for the clinical development of polymer‐based therapeutics. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6895–6908, 2006  相似文献   

18.
Several samples of polymeric micelles, formed by amphiphilic derivatives of PHEA, obtained by grafting into polymeric backbone of PEGs and/or hexadecylamine groups (PHEA-PEG-C(16) and PHEA-C(16)) and containing different amount of Tamoxifen, were prepared. All Tamoxifen-loaded polymeric micelles showed to increase drug water solubility. TEM studies provided evidence of the formation of supramolecular core/shell architectures containing drug, in the nanoscopic range and with spherical shape. Samples with different amount of encapsulated Tamoxifen were subjected to in vitro cytotoxic studies in order to evaluate the effect of Tamoxifen micellization on cell growth inhibition. All samples of Tamoxifen-loaded polymeric micelles showed a significantly higher antiproliferative activity in comparison with free drug, probably attributable to fluidification of cellular membranes, caused by amphiphilic copolymers, that allows a higher penetration of the drug into tumoral cells. To gain preliminary information about the potential use of prepared micelles as Tamoxifen drug delivery systems, studies evaluating drug release ability of micelle systems in media mimicking biological fluids (buffer solutions at pH 7.4 and 5.5) and in human plasma were carried out. These studies, performed evaluating the amount of Tamoxifen that remains in solution as a function of time, showed that at pH 7.4, as well as in plasma, PHEA-C(16) polymeric micelles were able to release lower drug amounts than PHEA-PEG(5000)-C(16) ones, while at pH 5.5, the behavior difference between two kind of micelles was less pronounced.  相似文献   

19.
A series of pyridinium and quaternary ammonium copper corroles has been designed and synthesized. All new compounds have been fully characterized by NMR spectroscopy, high-resolution mass spectrometry, UV/Vis spectrscopy, and elemental analysis. Biochemical studies have indicated that all of these corrole derivatives can stabilize G-quadruplex structures, with corrole 4 being the most effective according to the results of circular dichroism (CD) melting experiments, polymerase chain reaction (PCR) stop assays, and surface plasmon resonance (SPR) experiments. Moreover, both corroles 3 and 4 tend to induce the human telomeric sequence to form hybrid G-quadruplex structures, whereas corroles 8 and 9 are more inclined to induce the human telomeric sequence to form antiparallel G-quadruplex structures.  相似文献   

20.
The first ansa-aminoborane N-TMPN-CH2C6H4B(C6F5)2 (where TMPNH is 2,2,6,6-tetramethylpiperidinyl) which is able to reversibly activate H2 through an intramolecular mechanism is synthesized. This new substance makes use of the concept of molecular tweezers where the active N and B centers are located close to each other so that one H2 molecule can fit in this void and be activated. Because of the fixed geometry of this ansa-ammonium-borate it forms a short N-H...H-B dihydrogen bond of 1.78 A as determined by X-ray analysis. Therefore, the bound hydrogen can be released above 100 degrees C. In addition, the short H...H contact and the N-H...H (154 degrees) and B-H...H (125 degrees) angles show that the dihydrogen interaction in N-TMPNH-CH2C6H4BH(C6F5)2 is partially covalent in nature. As a basis for discussing the mechanism, quantum chemical calculations are performed and it is found that the energy needed for splitting H2 can arise from the Coulomb attraction between the resulting ionic fragments, or "Coulomb pays for Heitler-London". The air- and moisture-stable N-TMPNH-CH2C6H4BH(C6F5)2 is employed in the catalytic reduction of nonsterically demanding imines and enamines under mild conditions (110 degrees C and 2 atm of H2) to give the corresponding amines in high yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号