首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This feature article provides a compilation of tools available for preparing well-defined peptide/protein-polymer conjugates, which are defined as hybrid constructs combining (i) a defined number of peptide/protein segments with uniform chain lengths and defined monomer sequences (primary structure) with (ii) a defined number of synthetic polymer chains. The first section describes methods for post-translational, or direct, introduction of chemoselective handles onto natural or synthetic peptides/proteins. Addressed topics include the residue- and/or site-specific modification of peptides/proteins at Arg, Asp, Cys, Gln, Glu, Gly, His, Lys, Met, Phe, Ser, Thr, Trp, Tyr and Val residues and methods for producing peptides/proteins containing non-canonical amino acids by peptide synthesis and protein engineering. In the second section, methods for introducing chemoselective groups onto the side-chain or chain-end of synthetic polymers produced by radical, anionic, cationic, metathesis and ring-opening polymerization are described. The final section discusses convergent and divergent strategies for covalently assembling polymers and peptides/proteins. An overview of the use of chemoselective reactions such as Heck, Sonogashira and Suzuki coupling, Diels-Alder cycloaddition, Click chemistry, Staudinger ligation, Michael's addition, reductive alkylation and oxime/hydrazone chemistry for the convergent synthesis of peptide/protein-polymer conjugates is given. Divergent approaches for preparing peptide/protein-polymer conjugates which are discussed include peptide synthesis from synthetic polymer supports, polymerization from peptide/protein macroinitiators or chain transfer agents and the polymerization of peptide side-chain monomers.  相似文献   

2.
The clinical impact of peptides that accumulate in tumours is determined by the number of particle emitting or paramagnetic isotopes attached. Therefore, attempts should be made to increase the cargo capacity of the peptide carriers. A general synthetic route to conjugates is described that allows insertion of multiple DOTA (1,4,7,10-tetraazacyclododecane-N′,N″,N?,N?-tetraacetic acid) moieties at the N-terminal end of the cyclic peptide Tyr3-octreotate. The peptide moiety was assembled by Fmoc solid phase synthesis and oxidised to form the cyclic disulfide. Subsequently, the required number of DOTA-tris tert-butyl ester chelating units were attached to the side chains of lysines. The conjugates were purified and thoroughly studied by RP-HPLC, size exclusion HPLC and mass spectrometry. The labelling of the novel conjugates and of DOTA0-Tyr3-octreotate (DOTATATE) was exemplified for 90Y and 111In. The methodology described here allows the versatile introduction of multiple DOTA chelates into a peptide sequence, thus, introducing a new scope to the receptor affine peptides that can be synthesised using solid phase synthesis.  相似文献   

3.
The dynamical behavior of model peptides was evaluated with respect to their ability to form internal proton donor-acceptor pairs using molecular dynamics simulations. The proton donor-acceptor pairs are postulated to be prerequisites for peptide bond cleavage resulting in formation of b and y ions during low-energy collision-induced dissociation in tandem mass spectrometry (MS/MS). The simulations for the polyalanine pentamer Ala(5)H(+) were compared with experimental data from energy-resolved surface induced dissociation (SID) studies. The results of the simulation are insightful into the events that likely lead up to the fragmentation of peptides. Nine-mer polyalanine-based model peptides were used to examine the dynamical effect of each of the 20 common amino acids on the probability to form donor-acceptor pairs at labile peptide bonds. A range of probabilities was observed as a function of the substituted amino acid. However, the location of the peptide bond involved in the donor-acceptor pair plays a critical role in the dynamical behavior. This influence of position on the probability of forming a donor-acceptor pair would be hard to predict from statistical analyses on experimental spectra of aggregate, diverse peptides. In addition, the inclusion of basic side chains in the model peptides alters the probability of forming donor-acceptor pairs across the entire backbone. In this case, there are still more ionizing protons than basic residues, but the side chains of the basic amino acids form stable hydrogen bond networks with the peptide carbonyl oxygens and thus act to prevent free access of "mobile protons" to labile peptide bonds. It is clear from the work that the identification of peptides from low-energy CID using automated computational methods should consider the location of the fragmenting bond as well as the amino acid composition.  相似文献   

4.
The influence of charged side chains on the folding-unfolding equilibrium of beta-peptides was investigated by means of molecular dynamics simulations. Four different peptides containing only negatively charged side chains, positively charged side chains, both types of charged side chains (with the ability to form stabilizing salt bridges) or no charged side chains were studied under various conditions (different simulation temperatures, starting structures and solvent environment). The NMR solution structure in methanol of one of the peptides (A) has already been published; the synthesis and NMR analysis of another peptide (B) is described here. The other peptides (C and D) studied herein have hitherto not been synthesized. All four peptides A-D are expected to adopt a left-handed 3(14)-helix in solution as well as in the simulations. The resulting ensembles of structures were analyzed in terms of conformational space sampled by the peptides, folding behavior, structural properties such as hydrogen bonding, side chain-side chain and side chain-backbone interactions and in terms of the level of agreement with the NMR data available for two of the peptides. It was found that the presence of charged side chains significantly slows down the folding process in methanol solution due to the stabilization of intermediate conformers with side chain-backbone interactions. In water, where the solvent competes with the solute-solute polar interactions, the folding process to the 3(14)-helix is faster in the simulations.  相似文献   

5.
An efficient strategy for the synthesis of large libraries of conformationally defined peptides is reported, using dynamic combinatorial chemistry as a tool to graft amino acid side chains on a well-ordered 3D (3-dimension) peptide backbone. Combining rationally designed scaffolds with combinatorial side chains selection represents an alternative method to access peptide libraries for structures that are not genetically encodable. This method would allow a breakthrough for the discovery of protein mimetic for unconventional targets for which little is known.  相似文献   

6.
Programmed thermodynamic formation of star-like nanogels from designed diblock copolymers with thermally exchangeable dynamic covalent bonds in their side chains and structure analysis of the nanogels were performed. Linear diblock copolymers that consist of poly(methyl methacrylate) block and random copolymer block of methyl methacrylate (MMA) and methacrylic esters with alkoxyamine moiety were prepared by atom transfer radical polymerization (ATRP). By heating the diblock copolymers in anisole, a cross-linking reaction occurred as a result of the radical crossover reaction of alkoxyamine moieties to afford star-like nanogels. Kinetic studies have revealed that the cross-linking behavior reaches equilibrium at a given reaction time, with characteristic reaction behaviors for thermodynamic reactions being observed. The equilibrium structures of the star-like nanogels were controlled by the initial concentrations of diblock copolymers as well as their compositions and molecular weights. Furthermore, by heating the star-like nanogels with excess alkoxyamine, linear polymers were successfully regenerated. The molecular weights and sizes of the nanogels were evaluated by gel permeation chromatography-multiangle laser light scattering (GPC-MALLS) and small-angle X-ray scattering (SAXS) measurements, respectively, and the morphologies of the nanogels were directly observed by scanning force microscopy (SFM).  相似文献   

7.
Specific coiled-coil heterotrimers result from steric matching of hydrophobic core side chains. A 2:1 heterotrimer is formed by peptides containing alanine or cyclohexylalanine, respectively, at a central core residue. Detailed thermodynamic analysis reveals that the designed complex is considerably more stable than the corresponding alanine homotrimer (deltaT(m) = 25 degrees C, deltadeltaG(unf) = 4.5 kcal/mol), while control complexes with naphthylalanine or cyclopropylalanine peptides are much less stable. However, the cyclohexylalanine homotrimer is of comparable stability to the 2:1 complex, prompting an investigation of multiply substituted peptides. A specific 1:1:1 heterotrimer is formed from three independent peptide strands, each bearing one large (cyclohexylalanine) and two small (alanine) side chains at the same three core positions but in different order. The combined impact of three substitutions improves specificity to the point where each pure peptide and all pairwise equimolar mixtures form significantly less stable complexes (deltaTm = 22-24 degrees C). The capacity for specific complex formation governed by multiple unnatural core side chains should facilitate design of numerous new peptide assemblies.  相似文献   

8.
用ESI/MS-MS方法研究了质子化多肽RRMKWKK 在低能气相碰撞诱导解离(CID)条件下的碰撞能和解离路径. 研究结果表明, [M+2H]2+和[M+3H]3+的CID断裂曲线和断裂位点相似. 但质子化多肽所含正电荷个数不同时, 产生同一碎片离子的初始碰撞能不同. 碱性氨基酸残基精氨酸(Arg)的支链是多肽RRMKWKK质子化时质子优先结合的位点, 导致含有Arg的多肽在气相碰撞诱导解离条件下解离时需要较高的碰撞能. 在用质谱方法研究含精氨酸残基的多肽时应选择质子个数比多肽中Arg个数多1个的母体离子. 质子化多肽RRMKWKK的结构AM1计算结果表明, 质子化RRMKWKK中两个相邻精氨酸在空间上相互分离, 库伦斥力的影响不足以改变质子的优先结合位点.  相似文献   

9.
The enantiomer discrimination of peptides by electrospray ionization tandem mass spectrometry is described. A cinchona alkaloid derivative, tert-butylcarbamoylquinine, is used as chiral selector. The chiral selector forms diastereomeric complexes with the peptide enantiomers in the liquid phase (methanolic solution), which are then transferred to the gas phase, where their dissociation behaviour is studied in an ion-trap mass spectrometer. Different degrees of dissociation of the diastereomeric complexes allow for the discrimination of the peptide enantiomers. The influence of the peptide sequence on enantiomer discrimination is discussed and molecular recognition information is derived by comparing the results obtained for related peptides. For dipeptides, small amino acid residues at the N-terminus and bulky side chains at the C-terminus were found to enhance chiral recognition, while for tripeptides the effects were rather irregular.  相似文献   

10.
A joint experimental and theoretical investigation of the fragmentation behaviour of energised [M-H](-) anions from selected phosphorylated peptides has confirmed some of the most complex rearrangement processes yet to be reported for peptide negative ions. In particular: pSer and pThr (like pTyr) may transfer phosphate groups to C-terminal carboxyl anions and to the carboxyl anion side chains of Asp and Glu, and characteristic nucleophilic/cleavage reactions accompany or follow these rearrangements. pTyr may transfer phosphate to the side chains of Ser and Thr. The reverse reaction, namely transfer of a phosphate group from pSer or pThr to Tyr, is energetically unfavourable in comparison. pSer can transfer phosphate to a non-phosphorylated Ser. The non-rearranged [M-H](-) species yields more abundant product anions than its rearranged counterpart. If a peptide containing any or all of Ser, Thr and Tyr is not completely phosphorylated, negative-ion cleavages can determine the number of phosphated residues, and normally the positions of Ser, Thr and Tyr, but not which specific residues are phosphorylated. This is in accord with comments made earlier by Lehmann and coworkers.  相似文献   

11.
Intrahelical photoinduced electron transfer processes (ET) in conformationally restricted oligopeptides have been studied by nanosecond time-resolved transient spectroscopy. The helical peptides were constructed from sterically hindered alpha-aminoisobutyric acid (Aib) and two cyclic alpha-amino acids (Aib class) bearing electron acceptor and donor side chains (DkNap, ThQx). This helical backbone design provides high conformation stability, as previously demonstrated, and yields reliable 3(10)-helical architectures in solution. The forward ET between ThQx and 3DkNap is followed by a slow back ET thus giving rise to an accumulation of the charge-separated ion pairs for hundreds of nanoseconds. We demonstrate the modulation of electronic interactions by the number of intervening Aib residues separating acceptor-donor side chains and propose modifications of the peptide framework by inclusion of a non-Aib amino acid residue. These well-defined and sterically stable frameworks are suited for the precise evaluation of intrahelical electron transfer processes mediated by peptides.  相似文献   

12.
In this investigation, several peptides containing an increasing number of histidine residues have been designed and synthesised. The peptides involved repeat units of either the pentameric EAEHA or the tetrameric HLLH sequence motifs. Adsorption isotherms for these synthetic peptides and hexahistidine (hexa-His) as a control substance were measured under batch equilibrium binding conditions with an immobilised Cu(II)-iminodiacetic acid (IDA) sorbent. The experimental data were analysed in terms of Langmuirean binding behaviour. In common with previous studies with synthetic peptides, these investigations have demonstrate that the sequential organisation of the histidine side chains in these peptides can affect the selectivity of the coordination interactions with borderline metal ions in immobilised metal ion affinity chromatographic systems. The results also confirm that peptides selected on the basis of their potential to form amphipathic secondary structures with their histidine residues presented on one face of the molecule can exhibit equivalent or higher affinity constants towards copper ions than hexa-His, although they contain fewer histidine residues. These findings are thus relevant to the selection of peptides produced inter alia by combinatorial synthetic procedures to have enhanced binding properties for Cu(II) or Ni(II) ions, or intended for use as peptide tags in the fusion handle approach for the affinity chromatographic purification of recombinant proteins.  相似文献   

13.
A 10-ns molecular dynamics study of the solvation of a hydrophobic transmembrane helical peptide in dimethyl sulfoxide (DMSO) is presented. The objective is to analyze how this aprotic polar solvent is able to solvate three groups of amino acid residues (i.e., polar, apolar, and charged) that are located in a stable helical region of a transmembrane peptide. The 25-residue peptide (sMTM7) used mimics the cytoplasmic proton hemichannel domain of the seventh transmembrane segment (TM7) from subunit a of H(+)-V-ATPase from Saccharomyces cerevisiae. The three-dimensional structure of peptide sMTM7 in DMSO has been previously solved by NMR spectroscopy. The radial and spatial distributions of the DMSO molecules surrounding the peptide as well as the number of hydrogen bonds between DMSO and the side chains of the amino acid residues involved are extracted from the molecular dynamics simulations. Analysis of the molecular dynamics trajectories shows that the amino acid side chains are fully embedded in DMSO. Polar and positively charged amino acid side chains have dipole-dipole interactions with the oxygen atom of DMSO and form hydrogen bonds. Apolar residues become solvated by DMSO through the formation of a hydrophobic pocket in which the methyl groups of DMSO are pointing toward the hydrophobic side chains of the residues involved. The dual solvation properties of DMSO cause it to be a good membrane-mimicking solvent for transmembrane peptides that do not unfold due to the presence of DMSO.  相似文献   

14.
The Replica Exchange Statistical Temperature Molecular Dynamics algorithm is used to study the equilibrium properties of a peptide monomer and dimer and the thermodynamics of peptide dimer formation. The simulation data are analyzed by the Statistical Temperature Weighted Histogram Analysis Method. Each 10-residue peptide is represented by a coarse-grained model with hydrophobic side chains and has an α-helix as its minimum energy configuration. It is shown that the configurational behavior of the dimer can be divided into four regions as the temperature increases: two folded peptides; one folded and one unfolded peptide; two unfolded peptides; and two spatially separated peptides. Two important phenomena are discussed: in the dimer, one peptide unfolds at a lower temperature than the isolated monomer and the other peptide unfolds at a higher temperature than the isolated monomer. In addition, in the temperature region where one peptide is folded and the other unfolded, the unfolded peptide adopts an extended structure that minimizes the overall surface area of the aggregate. It is suggested that combination of destabilization due to aggregation and the resulting extended configuration of the destabilized peptide could have implications for nucleating β-sheet structures and the ultimate formation of fibrils.  相似文献   

15.
Amino acid and peptide conjugates of protoporphyrin have been prepared by reacting protoporphyringen with cysteine, glutathione and peptides containing a free thiol group under acidic conditions. The conjugates were formed by the addition of the thioamino acids or peptides to the vinyl groups of protoporphyrin during the autoxidation of protoporphyinogen to protoporphyrin and is free-radical-mediated. The conjugates were separated by high-performance liquid chromatography (HPLC) and characterized by HPLC/electrospray ionization mass spectrometry (HPLC/ESI-MS) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). All the conjugates formed were diconjugates consisting of diastereoisomers.  相似文献   

16.
Aqueous solution secondary structures of minimalist LK-peptides, with the generic sequence defined as KLL(KLLL)nKLLK, have been analyzed by means of circular dichroism (CD) and Raman scattering techniques. Our discussion in the present paper is mainly focused on four synthetic peptides (from 5 to 19 amino acids), KLLLK, KLLKLLLKLLK, KLLKLLLKLLLKLLK, and KLLKLLLKLLLKLLLKLLK, corresponding to the repeat unit, and to the peptide chains with the values of n = 1-3, respectively. CD and Raman spectra were analyzed in order to study both structural features of the peptide chains and their capability to form aggregates. On the basis of the obtained results it was concluded that the conformational flexibility of the shortest peptides (5-mer and 11-mer) is high enough to adopt random, beta-type, and helical chains in aqueous solution. However, the 11-mer shows a clear tendency to form beta-strands in phosphate buffer. The conformational equilibrium can be completely shifted to beta-type structures upon increasing ionic strength, i.e., in PBS and tris buffers. This equilibrium can also be shifted toward helical chains in the presence of methanol. Finally, the longest peptides (15-mer and 19-mer) are shown to form alpha-helical chains with an amphipathic character in aqueous solution. The possibility of bundle formation between helical chains is discussed over the temperature-dependent H-D exchange on labile hydrogens and particularly by considering the particular behavior of an intense Raman mode at 1127 cm-1 originating from the leucine residue side chain. The conformational dependence of this mode observed upon selective deuteration has never been documented up to now.  相似文献   

17.
Selenocysteine derivatives are useful precursors for the synthesis of peptide conjugates and selenopeptides. Several diastereomers of Fmoc-3-methyl-Se-phenylselenocysteine (FmocMeSec(Ph)) were prepared and used in solid phase peptide synthesis (SPPS). Once incorporated into peptides, the phenylselenide functionality provides a useful handle for the site and stereospecific introduction of E- or Z-dehydrobutyrine residues into peptide chains via oxidative elimination. The oxidation conditions are mild, can be performed on a solid support, and tolerate functionalities commonly found in peptides, including variously protected cysteine residues. Dehydropeptides containing unprotected cysteine residues undergo intramolecular stereoselective conjugate addition to afford cyclic lanthionines and methyllanthionines, which have the same stereochemistry as found in lantibiotics, a family of ribosomally synthesized and post-translationally modified peptide antibiotics. The observed stereoselectivity is shown to originate from a kinetic rather than a thermodynamic preference.  相似文献   

18.
In this report, we have synthesized organic/inorganic hybrid peptide–poly(?‐caprolactone) (PCL) conjugates via ring opening polymerization (ROP) of ?‐caprolactone (CL) in the presence of two sequence defined peptide initiators, namely POSS‐Leu‐Aib‐Leu‐NH2 (POSS: polyhedral oligomeric silsesquioxane; Leu: Leucine; Aib: α‐aminoisobutyric acid) and OMe‐Leu‐Aib‐Leu‐NH2. Covalent attachment of peptide segments with the PCLs were examined by 1H and 29Si NMR spectroscopy, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF‐MS) and FTIR spectroscopy. Supramolecular inclusion complexations of synthesized peptide‐PCL conjugates with α‐cyclodextrin (α‐CyD) were studied to understand the effect of POSS/OMe‐peptide moieties at the PCL chain ends. Inclusion complexation of peptide‐PCL conjugates with α‐CyD produced linear polypseudorotaxane, confirmed by 1H NMR, FTIR, powder X‐ray diffraction (PXRD), polarized optical microscopy (POM) and differential scanning calorimetry (DSC). Extent of α‐CyD threading onto the hybrid peptide‐PCL conjugated polymers is less than that of α‐CyD threaded onto the linear PCL. Thus, PCL chains were not fully covered by the host α‐CyD molecules due to the bulky POSS/OMe‐peptide moieties connected with the one edge of the PCL chains. PXRD experiment reveals channel like structures by the synthesized inclusion complexes (ICs). Spherulitic morphologies of POSS/OMe‐peptide‐PCL conjugates were fully destroyed after inclusion complexation with α‐CyD and tiny nanoobjects were produced. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3643–3651.  相似文献   

19.
We present a fundamental study into the self‐assembly of (cyclic peptide)–polymer conjugates as a versatile supramolecular motif to engineer nanotubes with defined structure and dimensions, as characterised in solution using small‐angle neutron scattering (SANS). This work demonstrates the ability of the grafted polymer to stabilise and/or promote the formation of unaggregated nanotubes by the direct comparison to the unconjugated cyclic peptide precursor. This ideal case permitted a further study into the growth mechanism of self‐assembling cyclic peptides, allowing an estimation of the cooperativity. Furthermore, we show the dependency of the nanostructure on the polymer and peptide chemical functionality in solvent mixtures that vary in the ability to compete with the intermolecular associations between cyclic peptides and ability to solvate the polymer shell.  相似文献   

20.
Four tripeptide chains, when attached to the same end of a hydrogen-bonded duplex (1.2) with the unsymmetrical, complementary sequences of ADAA/DADD, have been brought into proximity, leading to the formation of four hybrid duplexes, 1a.2a, 1a.2b, 1b.2a, and 1b.2b, each of which contains a two-stranded beta-sheet segment. The extended conformations of the peptide chains were confirmed by 1D and 2D NMR. The peptide strands stay registered through hydrogen bonding and the beta-sheets are stabilized by side chain interactions. Two-dimensional NMR data also indicate that the duplex template prevents further aggregation in the peptide segment. When the peptide chains are attached to the two different termini of the duplex template, NMR studies show the presence of a mixture with no clearly defined conformations. In the absence of the duplex template, the tripeptides are found to associate randomly. Finally, isothermal titration calorimetry studies revealed that the hybrid duplex 1a.2a was more stable than either the duplex template or the peptides alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号