首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
2.
The dissolution behavior of heat‐induced whey protein gels in alkali is compared with the literature on the dissolution of (1) uncrosslinked synthetic polymers with chemical reaction, (2) uncrosslinked polymers in a good solvent, and (3) crosslinked hydrogels. Diffusion of hydroxide and acid–base reactions, which are key processes in the dissolution of phenolic resins in alkali (Case 1), are found not to be very important with protein gels. The strong dependency of the dissolution rate on the free volume observed in protein gels is described by a large scaling factor, as predicted for Case 2 theory, indicating that the disentanglement of long chains before they are released is important. The cleavage of intermolecular crosslinks, which is important in Case 3, is also identified as a key dissolution step, where the complexity of protein chemistry comes into play. Synthetic polymer mechanisms are therefore able to elucidate several aspects of protein gel dissolution, but are not yet sufficient to explain all aspects of the process. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1007–1021, 2008  相似文献   

3.
Acrylamide chemical gels have been synthesized to obtain systems with mechanic and hydrophilic properties suitable for the cleaning of works of art. The gel characteristics were tailored by changing the polymer percentage present in the final hydrogel formulation from 2 to 10% w/w. Two different hydrogels have been selected in this interval for an in depth characterization (i.e., S 4% w/w and H 6% w/w). Water retention properties of the gels along with the free water index have been determined by the combination of standard dehydration tests and differential scanning calorimetry (DSC) measurements. The gels' structure has been determined by scanning electron microscopy (SEM) and small angle X-ray scattering (SAXS). The water retention capacity of hydrogel, H, was also determined. Cleaning tests on easel painting replicas, performed with both hydrogels loaded with an aqueous detergent system, showed good results in the removal of a widely used synthetic adhesive and hence offered these gels as a real alternative to the widely applied physical gel methodology with the advantage of being a residue-free technique. A preliminary SAXS investigation confirms the persistence of the detergent system nanostructure inside the hydrogel.  相似文献   

4.
Injectable hydrogels with biodegradability have in situ formability which in vitro/in vivo allows an effective and homogeneous encapsulation of drugs/cells, and convenient in vivo surgical operation in a minimally invasive way, causing smaller scar size and less pain for patients. Therefore, they have found a variety of biomedical applications, such as drug delivery, cell encapsulation, and tissue engineering. This critical review systematically summarizes the recent progresses on biodegradable and injectable hydrogels fabricated from natural polymers (chitosan, hyaluronic acid, alginates, gelatin, heparin, chondroitin sulfate, etc.) and biodegradable synthetic polymers (polypeptides, polyesters, polyphosphazenes, etc.). The review includes the novel naturally based hydrogels with high potential for biomedical applications developed in the past five years which integrate the excellent biocompatibility of natural polymers/synthetic polypeptides with structural controllability via chemical modification. The gelation and biodegradation which are two key factors to affect the cell fate or drug delivery are highlighted. A brief outlook on the future of injectable and biodegradable hydrogels is also presented (326 references).  相似文献   

5.
Three new bicomponent hydrogels of riboflavin (R) with salicylic acid (S), dihydroxybenzoic acid (B) and acetoguanamine (D) in 1:1 molar ratio have been reported. FTIR and UV-vis spectra suggest formation of H-bonded complexes in 1:1 molar ratio of the components. The network consists of tape, bar and helical tubes for RB11, RS11 and RD11 systems, respectively. Reversible first order phase transition and invariant storage modulus (G') with angular frequency (ω) characterise the systems as forming thermoreversible hydrogels. The RD11 gel has the highest gel melting temperature and highest critical strain compared to other gels. WAXS study indicates different crystal structures for different gels. NMR spectra reveals higher shielding of protons in RD11 gel suggesting better π-stacking compared to RS11 and RB11 gels. RD11 gel shows two-fold enhancement of photoluminescence (PL) intensity with a substantial red shift of emission peak but RB11 and RS11 gels show PL-quenching. The gels exhibit a small decrease in lifetime and the PL property is very much temperature and pH dependent. So the complementary molecules have a pronounced effect on morphology, structure, stability and optical property of riboflavin gels.  相似文献   

6.
The possibility of employing self-healing gels as potential artificial vitreous substitutes is being explored. Advancement of traditional synthetic hydrogels as vitreous substitutes is hindered by their fragmentation upon injection into the vitreous cavity leading ultimately to inflammation. Preliminary work involved developing first generation self-healing gels, using amphiphilic tri-block copolymers of poly(propylene glycol)-block-poly(ethylene glycol)-block-poly(propylene glycol) (PPG-PEG-PPG) as the building block. Eight linear self-healing gels are synthesized by tethering an ureidopyrimidinone system to synthetically modified PPG-PEG-PPG via the formation of a bis-urea as a linker. The reversible nature of the hydrogen bonds permits alteration of their physical properties by changing the environment, yet retaining desirable characteristics. Despite low solubility in water, these polymers demonstrated associating behaviour under the investigated conditions, which is encouraging. Future generations of self-healing gels should involve the selection of a more hydrophilic core and/or star-like polymers to facilitate gel formation and strengthen the network.  相似文献   

7.
The purpose of the study is to obtain multicomponent polyelectrolyte hydrogels with optimal synergistic properties by combining a modified starch with a synthetic one. Thus, new low‐cost and biocompatible semi‐interpenetrating polymer network (semi‐IPN) hydrogels of carboxymethyl starch and poly(2‐dimethylaminoethyl methacrylate) are prepared and investigated. The synthesized hydrogels are studied with respect to the specific characteristics of the gels: swelling kinetics, thermal analysis, viscoelastic characteristics, and their ability to be used as a matrix in drug delivery systems. Therefore, the semi‐IPN gels are loaded with ibuprofen, followed by additional tests to assess the in vitro drug release. The cytocompatibility of the hydrogels with respect to their composition is evaluated in vitro on fibroblast cell culture. The investigations confirm the obtainment of new semi‐IPN hydrogels with pH and temperature responsiveness, good mechanical strength, and potential for use as drug delivery systems or transdermal patches.  相似文献   

8.
A unique feature of synthetic helical polymers for the detection and amplification of chirality is briefly described in this article. In sharp contrast to host-guest and supramolecular systems that use small synthetic receptor molecules, chirality can be significantly amplified in a helical polymer, such as poly(phenylacetylene)s with functional pendants, which enable the detection of a tiny imbalance in biologically important chiral molecules through a noncovalent bonding interaction with high cooperativity. The rational design of polymeric receptors can be possible by using chromophoric helical polymers combined with functional groups as the pendants, which target particular chiral guest molecules for developing a highly efficient chirality-sensing system. The chirality sensing of other small molecular and supramolecular systems is also briefly described for comparison.  相似文献   

9.
Hydrogels derived from both natural and synthetic polymers have gained significant scientific attention in recent years for their potential use as biomedical materials to treat human diseases. While a great deal of research efforts have been directed towards investigating polymeric hydrogels as matrices for drug delivery systems, examples of such hydrogels exhibiting intrinsic therapeutic properties are relatively less common. Characteristics of synthetic and natural polymers such as high molecular weight, diverse molecular architecture, chemical compositions, and modulated molecular weight distribution are unique to polymers. These characteristics of polymers can be utilized to discover a new generation of drugs and medical devices. For example, polymeric hydrogels can be restricted to the gastrointestinal tract, where they can selectively recognize, bind, and remove the targeted disease-causing substances from the body without causing any systemic toxicity that are associated with traditional small molecule drugs. Similarly hydrogels can be implanted at specific locations (such as knee and abdomen) to impart localized therapeutic benefits. The present article provides an overview of certain recent developments in the design and synthesis of functional hydrogels that have led to several polymer derived drugs and biomedical devices. Some of these examples include FDA-approved marketed products.  相似文献   

10.
This paper reviews briefly our preliminary results concerning thermoplastic hydrogels and thermotropic aqueous gels from cellulose. Several kinds of thermoplastic hydrogels and thermotropic aqueous gels were prepared from cellulose and their thermal properties were examined. The former aims at preparing water-insoluble cellulose derivatives having a high water absorbency and a thermal flow temperature of approximately 130°C, while the later aims at preparing water-soluble cellulose derivatives which show a solubility behavior similar to that of synthetic polymers with a lower critical solution temperature (LCST) in aqueous solution. The results will be discussed in terms of the chemical structure of the prepared derivatives and their substituent distributions along the cellulose chain.  相似文献   

11.
Discontinuous and continuous volume phase transitions of organic polymer hydrogels, such as polyacrylamide (PAAm) and poly(N-isopropylamide) (PNIPA) gels, uponpH and temperature were studied by the positron annihilation lifetime measurement, which allows the estimation of size, intensity and size distribution of the free volume. Microscopic changes of physical and chemical interactions between gel network and solvent molecules and among conjugated solvent molecules at volume phase transitions of polyacrylamide gels were discussed.  相似文献   

12.
The technological need for new and better soft materials as well as the drive for new knowledge and fundamental understanding has led to significant advances in the field of nanocomposite gels. A variety of complex gel structures with unique chemical, physical, and biological properties have been engineered or discovered at the nanoscale. The possibility to form self-assembled and supramolecular morphologies makes organic polymers and inorganic nanoparticles desirable building blocks for the design of water based gels. In this review, we highlight the most recent (2004–2008) accomplishments and trends in the field of nanocomposite polymer hydrogels with a focus on creative approaches to generating structures, properties, and function within mostly biotechnological applications. We examine the impact of published work and conclude with an outline on future directions and challenges that come with the design and engineering of new nanocomposite gels.  相似文献   

13.
Liquid chromatography (LC) is a powerful tool for the characterization of synthetic polymers, that are inherently heterogeneous in molecular weight, chain architecture, chemical composition, and microstructure. Of different versions of the LC methods, size exclusion chromatography (SEC) is most commonly used for the molecular weight distribution analysis. SEC separates the polymer molecules according to the size of a polymer chain, a well‐defined function of molecular weight for linear homopolymers. The same, however, cannot be said of nonlinear polymers or copolymers. Hence, SEC is ill suited for and inefficient in separating the molecules in terms of chemical heterogeneity, such as differences in chemical composition of copolymers, tacticity, and functionality. For these purposes, another chromatographic method called interaction chromatography (IC) is found as a better tool because its separation mechanism is sensitive to the chemical nature of the molecules. The IC separation utilizes the enthalpic interactions to vary adsorption or partition of solute molecules to the stationary phase. Thus, it is used to separate polymers in terms of their chemical composition distribution or functionality. Further, the IC method has been shown to give rise to much higher resolution over SEC in separating polymers by molecular weight. We present here our recent progress in polymer characterization with this method. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1591‐1607, 2005  相似文献   

14.
The objective of this study was to characterize and evaluate the physicochemical properties and drug release profiles of hydrogels composed of silk protein (SP) polymers. SPs with a low MW (SPL, ca. 18 kDa) and a high MW (SPH, ca. 76 kDa) were used for preparing hydrogels. Both the random coil form and beta-sheet conformation simultaneously existed in the hydrogels according to Fourier-transformed IR determination. Morphologically, the hydrogels showed a sponge-like cross-linked structure produced by physical entanglement as well as chemical hydrogen and covalent bindings. The in vitro buprenorphine delivery from SPH hydrogels showed a slow-release effect, and a zero-order rate was obtained for all preparations. Drug release could be controlled by varying the SPH concentrations or incorporation of SPL into the systems. SP hydrogels showed a stronger barrier property for hydrophilic solutes than for hydrophobic solutes. The incorporation of SPH into Pluronic F-127 (PF-127) hydrogels changed the gel structure from amorphous micelles to a regularly interconnected texture with pores. Furthermore, SPH as an adjuvant polymer in PF-127 and chitosan hydrogels lowered and controlled the amount of drug released from those systems.  相似文献   

15.
Dynamic covalent chemistry (DCC) has proven to be a valuable tool in creating fascinating molecules, structures, and emergent properties in fully synthetic systems. Here we report a system that uses two dynamic covalent bonds in tandem, namely disulfides and hydrazones, for the formation of hydrogels containing biologically relevant ligands. The reversibility of disulfide bonds allows fiber formation upon oxidation of dithiol-peptide building block, while the reaction between NH−NH2 functionalized C-terminus and aldehyde cross-linkers results in a gel. The same bond-forming reaction was exploited for the “decoration” of the supramolecular assemblies by cell-adhesion-promoting sequences (RGD and LDV). Fast triggered gelation, cytocompatibility and ability to “on-demand” chemically customize fibrillar scaffold offer potential for applying these systems as a bioactive platform for cell culture and tissue engineering.  相似文献   

16.
A series of hydrogels based on N-isopropylacrylamide, sodium acrylate, and N-tert-butylacrylamide were synthesized by free radical polymerization in a mixture of dioxane and water with tetra(ethylene glycol) diacrylate as the crosslinker and benzoyl peroxide as the initiator. The swelling behavior including the swelling rate of the crosslinked gels in water was studied with gravimetric method. The swelling ratio of the gel (0.1 mol% crosslinking) can reach 420 g/g at 20 °C and such a gel can release 96% of the water absorbed at 40 °C. The lower critical swelling temperature (LCST) of the copolymers can be adjusted by changing the chemical composition of the polymers. Such crosslinked gels can be potentially used as thermosensitive superabsorbent because of their high water uptake and thermal sensitivity.  相似文献   

17.
Natural and synthetic gel‐like materials have featured heavily in the development of biomaterials for wound healing and other tissue‐engineering purposes. More recently, molecular gels have been designed and tailored for the same purpose. When mixed with, or conjugated to therapeutic drugs or bioactive molecules, these materials hold great promise for treating/curing life‐threatening and degenerative diseases, such as cancer, osteoarthritis, and neural injuries. This focus review explores the latest advances in this field and concentrates on self‐assembled gels formed under aqueous conditions (i.e., self‐assembled hydrogels), and critically compares their performance within different biomedical applications, including three‐dimensional cell‐culture studies, drug delivery, and tissue engineering. Although stability and toxicity issues still need to be addressed in more detail, it is clear from the work reviewed here that self‐assembled gels have a bright future as novel biomaterials.  相似文献   

18.
Hydrogels are hydrophilic, porous polymer networks that can absorb up to thousands of times their own weight in water. They have many potential applications, one of which is the encapsulation of freestanding black lipid membranes (BLMs) for novel separation technologies or biosensor applications. We investigated gels for in situ encapsulation of multiple BLMs formed across apertures in a hydrophobic ethylene tetrafluoroethylene (ETFE) support. The encapsulation gels consisted of networks of poly(ethylene glycol)‐dimethacrylate or poly(ethylene glycol)‐diacrylate polymerized using either a chemical initiator or a photoinitiator. The hydrogels were studied with regards to volumetric stability, porosity, and water permeability. All hydrogels had pore sizes around 7 nm with volumetric changes >2% upon crosslinking. Photoinitiated hydrogels had a lower hydraulic water permeability compared to chemically initiated hydrogels; however, for all hydrogels the permeability was several‐fold higher than the water permeability of conventional reverse osmosis (RO) membranes. Lifetimes of freestanding BLM arrays in gel precursor solutions were short compared to arrays formed in buffer. However, polymerizing (crosslinking) the gel stabilized the membranes and resulted in BLM arrays that remained intact for days. This is a substantial improvement over lifetimes for freestanding BLM arrays. Optical images of the membranes and single channel activity of incorporated gramicidin ion channels showed that the lipid membranes retained their integrity and functionality after encapsulation with hydrogel. Our results show that hydrogel encapsulation is a potential means to provide stability for biomimetic devices based on functional proteins reconstituted in biomimetic membrane arrays. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Weakly cross-linked temperature sensitive imprinted polymer hydrogels that recognize L-pyroglutamic acid (Pga) molecules via multiple-point hydrogen bonding were designed and synthesized. The amount of adsorption for Pga in imprinted hydrogels is 3-4 times higher than that in non-imprinted hydrogels. The selectivity test of imprinted polymer gels was carried out by using a series of structurally related compounds Pga, pyrrolidine, 2-pyrrolidone, L-proline as substrates. The results show that imprinted polymer gels exhibit high selectivity for Pga as compared to all the other tested substrates. The imprinted polymer hydrogels show good temperature sensitivity, special selectivity and reusability, suggesting that the polymer hydrogels would have an enormous potential for application in controlled drug release and separation field.  相似文献   

20.
The rheological properties of a recently developed self-assembling hydrogel system composed of beta-cyclodextrin (betaCD)- and cholesterol-derivatized 8-arm star-shaped poly(ethylene glycol) (PEG8) were investigated. To understand and predict the gel rheological properties, data fitting with the Maxwell model as well as comparing the system's concentration-dependent behavior with Cates' model for reversibly breaking chains were performed. To investigate the influence of the polymer architecture, networks were also prepared by replacing the cholesterol-derivatized 8-arm star-shaped PEG by linear bifunctional PEG-cholesterol or by using 4-arm instead of 8-arm polymers. Rheological analysis showed that the 8-arm polymer-based mixtures yielded tight viscoelastic networks, but their storage and loss moduli significantly deviated from those predicted by the Maxwell model. The scaling of the plateau moduli, relaxation times, and zero-shear viscosities with concentration for gels composed of 8-arm cholesterol- and betaCD-derivatized PEG followed a power law with exponents higher than predicted by Cates' model. On the other hand, hydrogels in which linear bifunctional PEG-cholesterol was used instead of 8-arm star-shaped PEG-cholesterol or which were based on 4-arm polymers showed a substantially better fit with the Maxwell model and reduced differences between empirical and Cates' theoretical scaling exponents. Rheological analysis also showed that the hydrogels were thermoreversible. At low temperatures, the gels showed viscoelastic behavior due to slow overall relaxation of the polymer chains. At higher temperatures, however, a reduced number of betaCD/cholesterol complexes and concomitant faster chain relaxation processes eventually led to liquid-like behavior. The relationship between temperature and the relaxation time was used to determine an activation energy of 46 kJ/mol for breaking and reptation of the polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号