首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We show that (13)C-(1)H dipolar couplings in fully protonated organic solids can be measured by applying a Symmetry-based Resonance-Echo DOuble-Resonance (S-REDOR) experiment at ultra-fast Magic-Angle Spinning (MAS). The (13)C-(1)H dipolar couplings are recovered by using the R12 recoupling scheme, while the interference of (1)H-(1)H dipolar couplings are suppressed by the symmetry properties of this sequence and the use of high MAS frequency (65 kHz). The R12 method is especially advantageous for large (13)C-(1)H dipolar interactions, since the dipolar recoupling time can be incremented by steps as short as one rotor period. This allows a fine sampling for the rising part of the dipolar dephasing curve. We demonstrate experimentally that one-bond (13)C-(1)H dipolar coupling in the order of 22 kHz can be accurately determined. Furthermore, the proposed method allows a rapid evaluation of the dipolar coupling by fitting the S-REDOR dipolar dephasing curve with an analytical expression.  相似文献   

2.
A heteronuclear dipolar recoupling scheme applicable to I-S spin pairs undergoing magic-angle-spinning (MAS) is introduced, based on the overtone irradiation of one of the coupled nuclei. It is shown that when I is a quadrupole, for instance (14)N, irradiating this spin at a multiple of its Larmor frequency prevents the formation of MAS dipolar echoes. The ensuing S-spin signal dephasing is significant and dependent on a number of parameters, including the I-S dipolar coupling, the magnitude of I's quadrupolar coupling, and the relative orientations between these two coupling tensors. When applied to a spin-1 nucleus, this overtone recoupling method differs from hitherto proposed recoupling strategies in that it involves only the +/-1> I(z) eigenstates. Its dephasing efficiency becomes independent of first-order quadrupolar effects yet shows a high sensitivity to second-order offsets. A constant-time/variable-offset recoupling sequence thus provides a simple route to acquire, in an indirect fashion, (14)N overtone spectra from rotating powders. The principles underlying this kind of S-(14)N experiments and different applications involving S = (13)C, (59)Co sites are presented.  相似文献   

3.
Dipolar recoupling techniques in solid-state nuclear magnetic resonance (NMR) consist of radio frequency (rf) pulse sequences applied in synchrony with magic-angle spinning (MAS) that create nonzero average magnetic dipole-dipole couplings under MAS. Stochastic dipolar recoupling (SDR) is a variant in which randomly chosen rf carrier frequency offsets are introduced to cause random phase modulations of individual pairwise couplings in the dipolar spin Hamiltonian. Several aspects of SDR are investigated through analytical theory and numerical simulations: (1) An analytical expression for the evolution of nuclear spin polarization under SDR in a two-spin system is derived and verified through simulations, which show a continuous evolution from coherent, oscillatory polarization exchange to incoherent, exponential approach to equilibrium as the range of random carrier offsets (controlled by a parameter f(max)) increases; (2) in a many-spin system, polarization transfers under SDR are shown to be described accurately by a rate matrix in the limit of large f(max), with pairwise transfer rates that are proportional to the inverse sixth power of pairwise internuclear distances; (3) quantum mechanical interferences among noncommuting pairwise dipole-dipole couplings, which are a complicating factor in solid-state NMR studies of molecular structures by traditional dipolar recoupling methods, are shown to be absent from SDR data in the limit of large f(max), provided that coupled nuclei have distinct NMR chemical shifts.  相似文献   

4.
Fast magic angle spinning (MAS) NMR spectroscopy is becoming increasingly important in structural and dynamics studies of biological systems and inorganic materials. Superior spectral resolution due to the efficient averaging of the dipolar couplings can be attained at MAS frequencies of 40 kHz and higher with appropriate decoupling techniques, while proton detection gives rise to significant sensitivity gains, therefore making fast MAS conditions advantageous across the board compared with the conventional slow- and moderate-MAS approaches. At the same time, many of the dipolar recoupling approaches that currently constitute the basis for structural and dynamics studies of solid materials and that are designed for MAS frequencies of 20 kHz and below, fail above 30 kHz. In this report, we present an approach for (1)H-(13)C/(1)H-(15)N heteronuclear dipolar recoupling under fast MAS conditions using R-type symmetry sequences, which is suitable even for fully protonated systems. A series of rotor-synchronized R-type symmetry pulse schemes are explored for the determination of structure and dynamics in biological and organic systems. The investigations of the performance of the various RN(n)(v)-symmetry sequences at the MAS frequency of 40 kHz experimentally and by numerical simulations on [U-(13)C,(15)N]-alanine and [U-(13)C,(15)N]-N-acetyl-valine, revealed excellent performance for sequences with high symmetry number ratio (N/2n > 2.5). Further applications of this approach are presented for two proteins, sparsely (13)C/uniformly (15)N-enriched CAP-Gly domain of dynactin and U-(13)C,(15)N-Tyr enriched C-terminal domain of HIV-1 CA protein. Two-dimensional (2D) and 3D R16(3)(2)-based DIPSHIFT experiments carried out at the MAS frequency of 40 kHz, yielded site-specific (1)H-(13)C/(1)H-(15)N heteronuclear dipolar coupling constants for CAP-Gly and CTD CA, reporting on the dynamic behavior of these proteins on time scales of nano- to microseconds. The R-symmetry-based dipolar recoupling under fast MAS is expected to find numerous applications in studies of protein assemblies and organic solids by MAS NMR spectroscopy.  相似文献   

5.
A new nuclear magnetic resonance approach for characterizing the thickness of phosphate, silicate, carbonate, and other nanoparticles in organic-inorganic nanocomposites is presented. The particle thickness is probed using the strongly distant-dependent dipolar couplings between the abundant protons in the organic phase and X nuclei (31P, 29Si, 13C, 27Al, 23Na, etc.) in the inorganic phase. This approach requires pulse sequences with heteronuclear dephasing only by the polymer or surface protons that experience strong homonuclear interactions, but not by dispersed OH or water protons in the inorganic phase, which have long transverse relaxation times T2,H. This goal is achieved by heteronuclear recoupling with dephasing by strong homonuclear interactions of protons (HARDSHIP). The pulse sequence alternates heteronuclear recoupling for approximately 0.15 ms with periods of homonuclear dipolar dephasing that are flanked by canceling 90 degrees pulses. The heteronuclear evolution of the long-T2,H protons is refocused within two recoupling periods, so that 1H spin diffusion cannot significantly dephase these coherences. For the short-T2,H protons of a relatively immobile organic matrix, the heteronuclear dephasing rate depends simply on the heteronuclear second moment. Homonuclear interactions do not affect the dephasing, even though no homonuclear decoupling is applied, because long-range 1H-X dipolar couplings approximately commute with short-range 1H-1H couplings, and heteronuclear recoupling periods are relatively short. This is shown in a detailed analysis based on interaction representations. The algorithm for simulating the dephasing data is described. The new method is demonstrated on a clay-polymer nanocomposite, diamond nanocrystals with protonated surfaces, and the bioapatite-collagen nanocomposite in bone, as well as pure clay and hydroxyapatite. The diameters of the nanoparticles in these materials range between 1 and 5 nm. Simulations show that spherical particles of up to 10 nm diameter can be characterized quite easily.  相似文献   

6.
7.
The quadrupolar Carr-Purcell Meiboom-Gill (QCPMG) and double frequency sweep (DFS)/QCPMG pulse sequences are applied in order to acquire the first solid-state 39K NMR spectra of organometallic complexes, the polymeric main group metallocenes cyclopentadienyl potassium (CpK) and pentamethylcyclopentadienyl potassium (Cp*K). Piecewise QCPMG NMR techniques are used to acquire a high S/N 39K spectrum of the broad central transition of Cp*K, which is ca. 200 kHz in breadth. Analytical and numerical simulations indicate that there is a significant quadrupolar interaction present at both potassium nuclei (C(Q)(39K) = 2.55(6)/2.67(8) MHz and 4.69(8) MHz for CpK (static/MAS) and Cp*K, respectively). Experimental quadrupolar asymmetry parameters suggest that both structures are bent about the potassium atoms (eta(Q)(39K) = 0.28(3)/0.29(3) for CpK (static/MAS) and eta(Q)(39K) = 0.30(3) for Cp*K). Variable-temperature (VT) 39K NMR experiments on CpK elucidate temperature-dependent changes in quadrupolar parameters which can be rationalized in terms of alterations of bond distances and angles with temperature. 13C CP/MAS NMR experiments are conducted upon both samples to quantify the carbon chemical shielding anisotropy (CSA) at the Cp' ring carbon atoms. Ab initio carbon CSA and 39K electric-field gradient (EFG) and CSA calculations are conducted and discussed for the CpK complex, in order to correlate the experimental NMR parameters with molecular structure in CpK and Cp*K. 39K DFS/QCPMG and 13C CP/MAS experiments prove invaluable for probing molecular structure, temperature-dependent structural changes, and the presence of impurities in these systems.  相似文献   

8.
New approaches to the characterization of resonances in the solid-state NMR spectroscopy of half-integer quadrupolar nuclei are explored, on the basis of the acquisition of heteronuclear separate-local-field spectra on rotating solids. In their two-dimensional version, these experiments correlate for each chemical site a second-order quadrupolar MAS powder pattern with the dipolar MAS sideband pattern to nearby heteronuclei. As 3D NMR sequences, such 2D anisotropic correlation spectra become separated for inequivalent chemical sites along a third, isotropic dimension. Extending in such manner separate-local-field NMR approaches to quadrupoles facilitates the assignment of inequivalent resonances to specific structural environments, and provides new tools for the investigation of dynamics in solids. Details about these 2D and 3D NMR experiments are given, and their application is illustrated with 1H-23Na recoupling experiments on mononucleotides possessing multiple bound cations.  相似文献   

9.
A series of 11 oxovanadium(V) complexes mimicking the active site of vanadium haloperoxidases have been investigated by (51)V magic angle spinning NMR spectroscopy and density functional theory (DFT). The MAS spectra are dominated by the anisotropic quadrupolar and chemical shielding interactions; for these compounds, C(Q) ranges from 3 to 8 MHz, and delta(sigma) is in the range 340-730 ppm. The quadrupolar coupling and chemical shielding tensors as well as their relative orientations have been determined by numerical simulations of the spectra. The spectroscopic NMR observables appear to be very sensitive to the details of the electronic and geometric environment of the vanadium center in these complexes. For the four crystallographically characterized compounds from the series, the quadrupolar and chemical shielding anisotropies were computed at the DFT level using two different basis sets, and the calculated tensors were in general agreement with the experimental solid-state NMR data. A combination of (51)V solid-state NMR and computational methods is thus beneficial for investigation of the electrostatic and geometric environment in diamagnetic vanadium systems with moderate quadrupolar anisotropies.  相似文献   

10.
Temperature-dependent (11)B T(1) values were measured for the BF(4) anion and BF(3) in the CF(3)BF(3) anion in room-temperature ionic liquids (RTILs) composed of the cation N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium (DEME). Including the lithium-salt-doped samples, two neat and two binary ionic liquids were studied. Arrhenius plots of the (11)B T(1) showed T(1) minima for BF(4) in the temperature range between 243 (or above freezing) and 373 K. Using the Bloembergen, Pound, and Purcell(BPP) equations for the (11)B quadrupolar and (11)B-(19) F dipolar relaxation mechanisms, the correlation times for motions of BF(4) were calculated. Since the internal rotation of BF(3) is assumed in CF(3)BF(3), T(1) minimum was not observed. The effects of the addition of the lithium salt on the (11)B correlation time and (11)BT(1) for the anions in the ILs are discussed.  相似文献   

11.
Spin-locking of half-integer quadrupolar nuclei, such as 23Na (I=3/2) and 27Al (I=5/2), is of renewed interest owing to the development of variants of the multiple-quantum and satellite-transition magic angle spinning (MAS) nuclear magnetic resonance experiments that either utilize spin-locking directly or offer the possibility that spin-locked states may arise. However, the large magnitude and, under MAS, the time dependence of the quadrupolar interaction often result in complex spin-locking phenomena that are not widely understood. Here we show that, following the application of a spin-locking pulse, a variety of coherence transfer processes occur on a time scale of approximately 1/omegaQ before the spin system settles down into a spin-locked state which may itself be time dependent if MAS is performed. We show theoretically for both spin I=3/2 and 5/2 nuclei that the spin-locked state created by this initial rapid dephasing typically consists of a variety of single- and multiple-quantum coherences and nonequilibrium population states and we discuss the subsequent evolution of these under MAS. In contrast to previous work, we consider spin-locking using a wide range of radio frequency field strengths, i.e., a range that covers both the "strong-field" (omega1 > omegaQPAS and "weak-field" (omega1 < omegaQPAS limits. Single- and multiple-quantum filtered spin-locking experiments on NaNO2, NaNO3, and Al(acac)3, under both static and MAS conditions, are used to illustrate and confirm the results of the theoretical discussion.  相似文献   

12.
A new technique for restoring nuclear magnetic dipole-dipole couplings under magic-angle spinning (MAS) in solid state nuclear magnetic resonance (NMR) spectroscopy is described and demonstrated. In this technique, called broadband rotational resonance (BroBaRR), the coupling between a pair of nuclear spins with NMR frequency difference close (but not necessarily equal) to the MAS frequency is restored by the application of a train of weak radio-frequency pulses at a carrier frequency close to the average of the two NMR frequencies. Phase or amplitude modulation of the pulse train at half the MAS frequency splits the carrier into sidebands close to the two NMR frequencies. The pulse train then removes offsets from the exact rotational resonance condition, leading to dipolar recoupling over a bandwidth controlled by the amplitude of the pulse train. (13)C NMR experiments on uniformly (15)N,(13)C-labeled L-valineHClH(2)O powder validate the theoretical analysis. BroBaRR will be useful in studies of molecular structures by solid state NMR, for example in the detection of long-range couplings between carbons in uniformly labeled organic and biological materials.  相似文献   

13.
Solid-state 93Nb and 13C NMR experiments, in combination with theoretical calculations of NMR tensors, and single-crystal and powder X-ray diffraction experiments, are applied for the comprehensive characterization of structure and dynamics in a series of organometallic niobium complexes. Half-sandwich niobium metallocenes of the forms Cp'Nb(I)(CO)4 and CpNb(V)Cl4 are investigated, where Cp = C5H5- and Cp' = C5H4R- with R = COMe, CO2Me, CO2Et, and COCH2Ph. Anisotropic quadrupolar and chemical shielding (CS) parameters are extracted from 93Nb MAS and static NMR spectra for seven different complexes. It is demonstrated that 93Nb NMR parameters are sensitive to changes in temperature and Cp' ring substitution in the Cp'Nb(I)(CO)4 complexes. There are dramatic differences in the 93Nb quadrupolar coupling constants (C(Q)) between the Nb(I) and Nb(V) complexes, with C(Q) between 1.0 and 12.0 MHz for Cp'Nb(CO)4 and C(Q) = 54.5 MHz for CpNbCl4. The quadrupolar Carr-Purcell Meiboom-Gill (QCPMG) pulse sequence is applied to rapidly acquire, in a piecewise fashion, a high signal-to-noise ultra-wide-line 93Nb NMR spectrum of CpNbCl4, which has a breadth of ca. 400 kHz. Solid-state 93Nb and 13C NMR spectra and powder XRD data are used to identify a new metallocene adduct coordinated at the axial position of the metal site by a THF molecule: CpNb(V)Cl4.THF. 13C MAS and CP/MAS NMR experiments are used to assess the purity of samples, as well as for measuring carbon CS tensors and the rare instance of one-bond 93Nb, 13C J-coupling, 1J(93Nb,13C). Theoretically calculated CS and electric field gradient (EFG) tensors are utilized to determine relationships between tensor orientations, the principal components, and molecular structures.  相似文献   

14.
High-resolution (19)F magic angle spinning (MAS) NMR spectroscopy is used to study disorder and bonding in a crystalline solid. (19)F MAS NMR reveals four distinct F sites in a 50% fluorine-substituted deuterated hydrous magnesium silicate (clinohumite, 4Mg(2)SiO(4)·Mg(OD(1-x)F(x))(2) with x = 0.5), indicating extensive structural disorder. The four (19)F peaks can be assigned using density functional theory (DFT) calculations of NMR parameters for a number of structural models with a range of possible local F environments generated by F(-)/OH(-) substitution. These assignments are supported by two-dimensional (19)F double-quantum MAS NMR experiments that correlate F sites based on either spatial proximity (via dipolar couplings) or through-bond connectivity (via scalar, or J, couplings). The observation of (19)F-(19)F J couplings is unexpected as the fluorines coordinate Mg atoms and the Mg-F interaction is normally considered to be ionic in character (i.e., there is no formal F-Mg-F covalent bonding arrangement). However, DFT calculations predict significant (19)F-(19)F J couplings, and these are in good agreement with the splittings observed in a (19)F J-resolved MAS NMR experiment. The existence of these J couplings is discussed in relation to both the nature of bonding in the solid state and the occurrence of so-called "through-space" (19)F-(19)F J couplings in solution. Finally, we note that we have found similar structural disorder and spin-spin interactions in both synthetic and naturally occurring clinohumite samples.  相似文献   

15.
We introduce a new approach to frequency-selective homonuclear dipolar recoupling in solid state nuclear magnetic resonance (NMR) with magic-angle spinning (MAS). This approach, to which we give the acronym SEASHORE, employs alternating periods of double-quantum recoupling and chemical shift evolution to produce phase modulations of the recoupled dipole-dipole interactions that average out undesired couplings, leaving only dipole-dipole couplings between nuclear spins with a selected pair of NMR frequencies. In principle, SEASHORE is applicable to systems with arbitrary coupling strengths and arbitrary sets of NMR frequencies. Arbitrary MAS frequencies are also possible, subject only to restrictions imposed by the pulse sequence chosen for double-quantum recoupling. We demonstrate the efficacy of SEASHORE in experimental (13)C NMR measurements of frequency-selective polarization transfer in uniformly (15)N, (13)C-labeled L-valine powder and frequency-selective intermolecular polarization transfer in amyloid fibrils formed by a synthetic decapeptide containing uniformly (15)N, (13)C-labeled residues.  相似文献   

16.
We describe solid-state NMR homonuclear recoupling experiments at high magic-angle spinning (MAS) frequencies using the radio frequency-driven recoupling (RFDR) scheme. The effect of heteronuclear decoupling interference during RFDR recoupling at high spinning frequencies is investigated experimentally and via numerical simulations, resulting in the identification of optimal decoupling conditions. The effects of MAS frequency, RF field amplitude, bandwidth, and chemical shift offsets are examined. Most significantly, it is shown that broadband homonuclear correlation spectra can be efficiently obtained using RFDR without decoupling during the mixing period in fully protonated samples, thus considerably reducing the rf power requirements for acquisition of (13)C-(13)C correlation spectra. The utility of RFDR sans decoupling is demonstrated with broadband correlation spectra of a peptide and a model protein at high MAS frequencies and high magnetic field.  相似文献   

17.
The calcium silicate hydrate (C-S-H) phase resulting from hydration of a white Portland cement (wPc) in water and in a 0.3 M NaAlO(2) solution has been investigated at 14 and 11 hydration times, respectively, ranging from 6 h to 1 year by (27)Al and (29)Si MAS NMR spectroscopy. (27)Al MAS NMR spectra recorded at 7.05, 9.39, 14.09, and 21.15 T have allowed a determination of the (27)Al isotropic chemical shift (delta(iso)) and quadrupolar product parameter (P(Q) = C(Q)) for tetrahedrally coordinated Al incorporated in the C-S-H phase and for a pentacoordinated Al site. The latter site may originate from Al(3+) substituting for Ca(2+) ions situated in the interlayers of the C-S-H structure. The spectral region for octahedrally coordinated Al displays resonances from ettringite, monosulfate, and a third aluminate hydrate phase (delta(iso) = 5.0 ppm and P(Q) = 1.20 MHz). The latter phase is tentatively ascribed to a less-crystalline aluminate gel or calcium aluminate hydrate. The tetrahedral Al incorporated in the C-S-H phase has been quantitatively determined from (27)Al MAS spectra at 14.09 T and indirectly observed quantitatively in (29)Si MAS NMR spectra by the Q(2)(1Al) resonance at -81.0 ppm. A linear correlation is observed between the (29)Si MAS NMR intensity for the Q(2)(1Al) resonance and the quantity of Al incorporated in the C-S-H phase from (27)Al MAS NMR for the different samples of hydrated wPc. This correlation supports the assignment of the resonance at delta(iso)((29)Si) = -81.0 ppm to a Q(2)(1Al) site in the C-S-H phase and the assignment of the (27)Al resonance at delta(iso)((27)Al) = 74.6 ppm, characterized by P(Q)((27)Al) = 4.5 MHz, to tetrahedrally coordinated Al in the C-S-H. Finally, it is shown that hydration of wPc in a NaAlO(2) solution results in a C-S-H phase with a longer mean chain length of SiO(4) tetrahedra and an increased quantity of Al incorporated in the chain structure as compared to the C-S-H phase resulting from hydration of wPc in water.  相似文献   

18.
Selective reintroduction of anisotropic interactions such as the chemical shift anisotropy (CSA) and homonucler dipolar (HMD) coupling were implemented in a high-resolution NMR spectroscopy for half-integer quadrupolar nuclei. Rotary resonance recoupling (R(3)) combined with the multiple-quantum magic-angle spinning (MQMAS) in a three-dimensional (3D) experiment provides not only site-specific high-resolution spectra to yield the quadrupolar interaction parameters but also the CSA or HMD interaction parameters. This 3D experiment provides an avenue for the complete local structural information of half-integer quadrupolar nuclei. Three-dimensional MQMAS experiments incorporating R(3) of HMD and CSA interactions were demonstrated on model compounds containing (11)B, (23)Na, and (87)Rb nuclei.  相似文献   

19.
Spin-echo, double-resonance (SEDOR) dipolar recoupling experiments are illustrated on an I = 1/2, S = 3/2 spin system for static and spinning samples. An (15)N-(23)Na spin system is used to show that the simple pulse sequence is very effective in causing (15)N dipolar dephasing using either a (23)Na pi/2 recoupling pulse or a long radio-frequency (r.f.) recoupling pulse.  相似文献   

20.
Solid-state (17)O NMR spectroscopy is employed to characterize powdered samples of known monoclinic and orthorhombic modifications of (17)O-enriched triphenylphosphine oxide, Ph(3)PO. Precise data on the orientation-dependent (17)O electric field gradient (EFG) and chemical shift (CS) tensors are obtained for both polymorphs. While the (17)O nuclear quadrupolar coupling constants (C(Q)) are essentially identical for the two polymorphs (C(Q) = -4.59 +/- 0.01 MHz (orthorhombic); C(Q) = -4.57 +/- 0.01 MHz (monoclinic)), the spans (Omega) of the CS tensors are distinctly different (Omega = 135 +/- 3 ppm (orthorhombic); Omega = 155 +/- 5 ppm (monoclinic)). The oxygen CS tensor is discussed in terms of Ramsey's theory and the electronic structure of the phosphorus-oxygen bond. The NMR results favor the hemipolar sigma-bonded R(3)P(+)-O(-) end of the resonance structure continuum over the multiple bond representation. Indirect nuclear spin-spin (J) coupling between (31)P and (17)O is observed directly in (17)O magic-angle-spinning (MAS) NMR spectra as well as in (31)P MAS NMR spectra. Ab initio and density-functional theory calculations of the (17)O EFG, CS, and (1)J((31)P,(17)O) tensors have been performed with a variety of basis sets to complement the experimental data. This work describes an interesting spin system for which the CS, quadrupolar, J, and direct dipolar interactions all contribute significantly to the observed (17)O NMR spectra and demonstrates the wealth of information which is available from NMR studies of solid materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号