首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New step‐growth graft block copolymers were synthesized. These two‐sided comb copolymers consisted of a poly(amic ester) (PAE) backbone and pendant poly(propylene oxide) (PPO) grafts. The copolymers were made via a macromonomer approach, in which the 4,6‐bischlorocarbonyl isophthalic acid bis[poly(propylene oxide)] ester macromonomer was synthesized through the reaction of hydroxyl‐terminated PPO oligomers with pyromellitic dianhydride and oxalyl chloride. This macromonomer was subsequently used in step‐growth polymerization with comonomers 4,6‐bischlorocarbonyl isophthalic acid diethyl ester, 2,5‐bischlorocarbonyl terephthalic acid diethyl ester, and 2,2‐bis[4‐ (4‐aminophenoxy)phenyl] hexafluoropropane, and this yielded PPO‐co‐PAE graft copolymers. Accordingly, we report the synthesis and characterization of the PPO oligomer, the PPO macromonomer, and their corresponding PPO‐co‐PAE graft copolymers. Graft copolymers with PPO concentrations of 3–26 wt % were synthesized. These polymers were thermally cured to produce polyimide/PPO composites. The thermolysis of these polyimide/PPO composites yielded porous polyimide films with porosities ranging of 4–22.5%. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2266–2275, 2005  相似文献   

2.
Poly[styrene (ST)-tetrahydrofuran (THF)-2-methyl-2-oxazoline(MeOz)] triblock and graft copolymers were prepared by ionic polymerizations. Poly(ST-THF) graft copolymers were synthesized by coupling of ST-4-vinylpyridine (4VP) copolymer with a large excess of PTHF dication. The ion coupling of PST dianion with PTHF dication was accompanied by the side reaction (abstraction of α proton of oxonium ion). After tosylation of terminal hydroxyl groups of PTHF blocks, cationic copolymerizations of MeOz with poly(ST-THF) block and graft copolymers were carried out, and characteristics of produced copolymers were investigated in some detail.  相似文献   

3.
The present report describes the synthesis of a densely grafted copolymer consisting of a rigid main chain and flexible side chains by the atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) from an ATRP initiator‐bearing poly(phenylacetylene) [poly(BrPA)]. Poly(BrPA) was obtained by the polymerization of 4‐ethynylbenzyl‐2‐bromoisobutyrate using [Rh(NBD)Cl]2 in the presence of Et3N. The 1H NMR spectrum showed that poly(BrPA) was in the cis‐transoid form. Upon heating at 30 °C for 24 h the cis‐transoid form was maintained. ATRP of MMA from the poly(BrPA) was carried out at 30 °C using CuX (X = Br, Cl) as the catalyst and N,N,N′,N′,N′‐pentamethyldiethylenetriamine as the ligand, and the resulting graft copolymers were investigated with 1H NMR and SEC. To analyze the graft structure in more detail, the graft copolymers were hydrolyzed with KOH and the resultant poly(MMA) part was investigated with 1H NMR and SEC. The polydispersity indexes of 1.25–1.45 indicated that the graft copolymers have well‐controlled side chains. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6697–6707, 2006  相似文献   

4.
Graft copolymers containing poly(ethylene oxide) side chains on a polystyrene backbone have been synthesized. Styrene copolymers synthesized by free radical mechanism and containing between 5 and 15 mol % acrylamide or methacrylamide were used as backbones. The amide groups in the copolymers were ionized by using potassium tert-butoxide or potassium naphthalene, and grafting was achieved by utilizing the amide anions as initiator sites for the polymerization of ethylene oxide in 2-ethoxyethyl ether at 65°C. The graft copolymers were characterized with respect to molecular weight and composition using elemental analysis, NMR, gel permeation chromatography, IR, and viscosity measurements. The size of the side chains were between 600 and 2000 g/mol. GPC results from a hydrolyzed graft copolymer sample suggest a narrow size distribution for the poly(ethylene oxide) grafts. Solution properties of the graft copolymers were investigated in different toluene/methanol mixtures. The intrinsic viscosities of the graft copolymers were found to depend primarily on the poly(ethylene oxide) content rather than the graft density or the poly(ethylene oxide) chain length. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
ABA‐type triblock copolymers and AB‐type star diblock copolymers with poly(2‐adamantyl vinyl ether) [poly(2‐AdVE)] hard outer segments and poly(n‐butyl vinyl ether) [poly(NBVE)] soft inner segments were synthesized by sequential living cationic copolymerization. Although both the two polymer segments were composed solely of poly(vinyl ether) backbones and hydrocarbon side chains, they were segregated into microphase‐separated structure, so that the block copolymers formed thermoplastic elastomers. Both the ABA‐type triblock copolymers and the AB‐type star diblock copolymers exhibited rubber elasticity over wide temperature range. For example, the ABA‐type triblock copolymers showed rubber elasticity from about ?53 °C to about 165 °C and the AB‐type star diblock copolymer did from about ?47 °C to 183 °C with a similar composition of poly(2‐AdVE) and poly(NBVE) segments in the dynamic mechanical analysis. The AB‐type star diblock copolymers exhibited higher tensile strength and elongation at break than the ABA‐type triblock copolymers. The thermal decomposition temperatures of both the block copolymers were as high as 321–331 °C, indicating their high thermal stability. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

6.
Relatively high-molecular-weight segmented polyurethanes based on methylene bis(4-phenyl-iso-cyanate), poly(propylene glycol), butane-1,4 diol, and cis-2-butene-1,4 diol have been synthesized and characterized. These unsaturated polyurethanes were successfully grafted using N-vinyl pyrrolidone as monomer and 2,2′-azobisisobutyronitrile as free-radical initiator. However, grafting experiments involving benzoyl peroxide as initiator were unsuccessful. The graft copolymers were isolated from the ungrafted polyurethane and poly(N-vinyl pyrrolidone) by selective solvent extraction. Elemental microanalysis, IR, NMR, thermogravimetric analysis, and equilibrium water sorption measurements were used to characterize the graft copolymers.  相似文献   

7.
Poly(methylphenylsiloxane)–poly(methyl methacrylate) graft copolymers (PSXE-g-PMMA) were prepared by condensation reaction of poly(methylphenylsiloxane)-containing epoxy resin (PSXE) with carboxyl-terminated poly(methyl methacrylate) (PMMA), and they were characterized by gel permeation chromatography (GPC), infrared (IR), and 29Si and 13C nuclear magnetic resonance (NMR). The microstructure of the PSXE-g-PMMA graft copolymer was investigated by proton spin–spin relaxation T2 measurements. The thermal stability and apparent activation energy for thermal degradation of these copolymers were studied by thermogravimetry and compared with unmodified PMMA. The incorporation of poly(methylphenylsiloxane) segments in graft copolymers improved thermal stability of PMMA and enhanced the activation energy for thermal degradation of PMMA. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2521–2530, 1998  相似文献   

8.
A series of copolymers composed of methoxy poly(ethylene glycol) and a hydrophobic block of poly(ɛ-caprolactone-co-propargyl carbonate) grafted with poly(2-[dimethylamino]ethyl methacrylate) was synthesized by combining ring opening polymerization, azide-alkyne click reaction, and atom transfer radical polymerization (ATRP). Well-defined copolymers with a target composition and a tailored structure were achieved via the grafting from approach by using a single catalytic system for both click reaction and ATRP. Kinetic studies demonstrated the controlled/living character of the employed polymerization methods. The thermal properties and self-assembly in aqueous medium of the graft copolymers were dependent on their composition. The resulting polymeric materials showed low cytotoxicity toward L929 cells, demonstrating their potential for biomedical applications. This type of materials containing cationic side chains tethered to biocompatible and biodegradable segments could be the basis for promising candidates as drug and gene delivery systems.  相似文献   

9.
A relatively high-molecular-weight polyurethane based on MDI and ethylene glycol was prepared and characterized. This polymer was metalated with sodium hydride in N,N-dimethylformamide (DMF) at about 0°C. Metalation was confirmed principally by spectroscopic identification of the N-methyl derivative obtained by coupling the metalated polymer with methyl iodide. Under appropriate reaction conditions the metalated polyurethane was used for the anionic graft polymerization of the reactive monomers acrylonitrile and ethylene and propylene sulfides. Attempted anionic graft polymerizations with other monomers, including styrene and ethylene and propylene oxides, were unsuccessful. The polyurethane grafted with acrylonitrile was separated by fractionation from accompanying small amounts of polyacrylonitrile, a low-molecular-weight homopolymer. One sample of polyurethane grafted with acrylonitrile was identified by microanalysis, IR, NMR, and increase in weight and was also characterized by differential thermal analysis.  相似文献   

10.
The thermal stabilities of various poly(alkyl methacrylate) homopolymers and poly(methyl methacrylate-g-dimethyl siloxane) (PMMA-g-PSX) graft copolymers have been determined by thermogravimetric analysis (TGA). As expected, the thermal stabilities of poly(alkyl methacrylates) were a function of the ester alkyl group, and polymerization mechanism. In particular, thermally labile linkages, which result from termination during free radical or nonliving polymerization mechanisms, decrease the ultimate thermal stabilities of the polymers. However, graft copolymers, which were prepared by the macromonomer technique with free radical initiators, exhibited enhanced thermal stability compared to homopolymer controls. A more complex free radical polymerization mechanism for the macromonomer modified polymerization may account for this result. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
poly[isobutene-co-(p,m-chloromethylstyrene)]-graft-poly(2-methyl-2-oxazoline) graft copolymers ( GP ) were prepared by the “grafting from” method throught the cationic polymerization of 2-methyl-2-oxazoline (MeOXA) initiated by a statistical copolymer is isobutene and chloromethylstyrene. The unusual viscosity behavior in chloroform solution of these polymers, the dynamic laser light scattering analysis in aqueous solution, as well as the solubility in polar solvents like water and methanol demonstrate the amphiphilic character of the graft copolymers and indicate the formation of aggregates in solution.  相似文献   

12.
Biodegradable and amphiphilic diblock copolymers [polylactide-block-poly(ethylene glycol)] and triblock copolymers [polylactide-block-poly(ethylene glycol)-block-polylactide] were synthesized by the anionic ring-opening polymerization of lactides in the presence of poly(ethylene glycol) methyl ether or poly(ethylene glycol) and potassium hexamethyldisilazide as a catalyst. The polymerization in toluene at room temperature was very fast, yielding copolymers of controlled molecular weights and tailored molecular architectures. The chemical structure of the copolymers was investigated with 1H and 13C NMR. The formation of block copolymers was confirmed by 13C NMR and differential scanning calorimetry investigations. The monomodal profile of the molecular weight distribution by gel permeation chromatography provided further evidence of block copolymer formation as well as the absence of cyclic species. Additional confirmation of the block copolymers was obtained by the substitution of 2-butanol for poly(ethylene glycol); butyl groups were clearly identified by 1H NMR as polymer chain end groups. The effects of the copolymer composition and lactide stereochemistry on the copolymer properties were examined. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2235–2245, 2007  相似文献   

13.
A series of novel temperature‐ and pH‐responsive graft copolymers, poly(L ‐glutamic acid)‐g‐poly(N‐isopropylacrylamide), were synthesized by coupling amino‐semitelechelic poly(N‐isopropylacrylamide) with N‐hydroxysuccinimide‐activated poly(L ‐glutamic acid). The graft copolymers and their precursors were characterized, by ESI‐FTICR Mass Spectrum, intrinsic viscosity measurements and proton nuclear magnetic resonance (1H NMR). The phase‐transition and aggregation behaviors of the graft copolymers in aqueous solutions were investigated by the turbidity measurements and dynamic laser scattering. The solution behavior of the copolymers showed dependence on both temperature and pH. The cloud point (CP) of the copolymer solution at pH 5.0–7.4 was slightly higher than that of the solution of the PNIPAM homopolymer because of the hydrophilic nature of the poly(glutamic acid) (PGA) backbone. The CP markedly decreased when the pH was lowered from 5 to 4.2, caused by the decrease in hydrophilicity of the PGA backbone. At a temperature above the lower critical solution temperature of the PNIPAM chain, the copolymers formed amphiphilic core‐shell aggregates at pH 4.5–7.4 and the particle size was reduced with decreasing pH. In contrast, larger hydrophobic aggregates were formed at pH 4.2. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4140–4150, 2008  相似文献   

14.
The ABA‐type triblock copolymers consisting of poly(2‐adamantyl vinyl ether) [poly(2‐AdVE)] as outer hard segments and poly(6‐acetoxyhexyl vinyl ether) [poly(AcHVE)], poly(6‐hydroxyhexyl vinyl ether) [poly(HHVE)], or poly(2‐(2‐methoxyethoxy)ethyl vinyl ether) [poly(MOEOVE)] as inner soft segments were synthesized by sequential living cationic polymerization. Despite the presence of polar functional groups such as ester, hydroxyl, and oxyethylene units in their soft segments, the block copolymers formed elastomeric films. The thermal and mechanical properties and morphology of the block copolymers showed that the two polymer segments of these triblock copolymers were segregated into microphase‐separated structure. Effect of the functional groups in the soft segments on gas permeability was investigated as one of the characteristics of the new functional thermoplastic elastomers composed solely of poly(vinyl ether) backbones. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1114–1124  相似文献   

15.
Poly[N‐isopropylacrylamide‐g‐poly(ethylene glycol)]s with a reactive group at the poly(ethylene glycol) (PEG) end were synthesized by the radical copolymerization of N‐isopropylacrylamide with a PEG macromonomer having an acetal group at one end and a methacryloyl group at the other chain end. The temperature dependence of the aqueous solutions of the obtained graft copolymers was estimated by light scattering measurements. The intensity of the light scattering from aqueous polymer solutions increased with increasing temperature. In particular, at temperatures above 40°C, the intensity abruptly increased, indicating a phase separation of the graft copolymer due to the lower critical solution temperature (LCST) of the poly(N‐isopropylacrylamide) segment. No turbidity was observed even above the LCST, and this suggested a nanoscale self‐assembling structure of the graft copolymer. The dynamic light scattering measurements confirmed that the size of the aggregate was in the range of several tens of nanometers. The acetal group at the end of the PEG graft chain was easily converted to the aldehyde group by an acid treatment, which was analyzed by 1H NMR. Such a temperature‐induced nanosphere possessing reactive PEG tethered chains on the surface is promising for new nanobased biomedical materials. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1457–1469, 2006  相似文献   

16.
A successive method for preparing novel amphiphilic graft copolymers with a hydrophilic backbone and hydrophobic side chains was developed. An anionic copolymerization of two bifunctional monomers, namely, allyl methacrylate (AMA) and a small amount of glycidyl methacrylate (GMA), was carried out in tetrahydrofuran (THF) with 1,1‐diphenylhexyllithium (DPHL) as the initiator in the presence of LiCl ([LiCl]/[DPHL]0 = 2), at −50 °C. The copolymer poly(AMA‐co‐GMA) thus obtained possessed a controlled molecular weight and a narrow molecular weight distribution (Mw /Mn = 1.08–1.17). Without termination and polymer separation, a coupling reaction between the epoxy groups of this copolymer and anionic living polystyrene [poly(St)] at −40 °C generated a graft copolymer with a poly(AMA‐co‐GMA) backbone and poly(St) side chains. This graft copolymer was free of its precursors, and its molecular weight as well as its composition could be well controlled. To the completed coupling reaction solution, a THF solution of 9‐borabicyclo[3.3.1]nonane was added, and this was followed by the addition of sodium hydroxide and hydrogen peroxide. This hydroboration changed the AMA units of the backbone to 3‐hydroxypropyl methacrylate, and an amphiphilic graft copolymer with a hydrophilic poly(3‐hydroxypropyl methacrylate) backbone and hydrophobic poly(St) side chains was obtained. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1195–1202, 2000  相似文献   

17.
Novel block–graft copolymers [poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene)‐g‐poly(tert‐butyl acrylate)] were synthesized by the atom transfer radical polymerization (ATRP) of tert‐butyl acrylate (tBA) with chloromethylated poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) (SEBS) as a macromolecular initiator. The copolymers were composed of triblock SEBS as the backbone and tBA as grafts attached to the polystyrene end blocks. The macromolecular initiator (chloromethylated SEBS) was prepared by successive hydrogenation and chloromethylation of SEBS. The degree of chloromethylation, ranging from 1.6 to 36.5 mol % according to the styrene units in SEBS, was attained with adjustments in the amount of SnCl4 and the reaction time with a slight effect on the monodispersity of the starting material (SEBS). The ATRP mechanism of the copolymerization was supported by the kinetic data and the linear increase in the molecular weights of the products with conversion. The graft density was controlled with changes in the functionality of the chloromethylated SEBS. The average length of the graft chain, ranging from a few repeat units to about two hundred, was adjusted with changes in the reaction time and alterations in the initiator/catalyst/ligand molar ratio. Incomplete initiation was detected at a low conversion; moreover, for initiators with low functionality, sluggish initiation was overcome with suitable reaction conditions. The block–graft copolymers were hydrolyzed into amphiphilic ones containing poly(acrylic acid) grafts. The aggregation behavior of the amphiphilic copolymers was studied with dynamic light scattering and transmission electron microscopy, and the aggregates showed a variety of morphologies. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1253–1266, 2002  相似文献   

18.
Poly(styrene-graft-ethylene oxide), having alkyl chains (C12 or C18) on the polystyrene main chain or on the poly(ethylene oxide) (PEO) side chains, were synthesized. The main chain was alkylated by first ionizing amide groups in a styrene/acrylamide copolymer with tert-butoxide, and then using the amide anions as sites for reactions with 1-bromoalkanes. An excess of amide anions was used in the reaction, and the remaining anions were subsequently utilized as initiator sites for the anionic polymerization of ethylene oxide (EO). Synthesis of poly(styrene-graft-ethylene oxide) with alkylated side chains was accomplished by polymerization of EO onto the ionized styrene/acrylamide copolymer, followed by an alkylation of the terminal alkoxide anions with 1-bromoalkanes. The alkylated graft copolymers were structurally characterized by using elemental analysis, 1H NMR, GPC, and IR spectroscopy. DSC analysis showed that only graft copolymers with PEO contents exceeding about 50 wt % and side chain crystallinities comparable to those of homo-PEO. Main chain alkylated graft copolymers generally had higher crystalinities, as compared to nonalkylated and side chain alkylated samples. The graft copolymers absorbed water corresponding to one water molecule per EO unit at low PEO contents. The water absorption increased progressively at PEO contents above 30 wt % for main chain alkylated samples and above 50 wt % for non-alkylated samples. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
ABSTRACT

Transparent organic/pre-ceramic composite films of poly(methyl methacrylate) [PMMA] and perhydropolysilazane [PHPS] were synthesized by blending poly(methyl methacrylate-co-2-hydroxyethyl methacrylate) [P(MMA-co-HEMA)] random copolymers and PHPS. In the blend films, P(MMA-graft-PHPS) graft copolymers were formed, PMMA and PHPS were microscopically phase-separated in the solid state. Morphology of the microphase separation was investigated by transmission electron microscopy by changing HEMA content of the random copolymers and blend ratio of PHPS to HEMA. To convert PHPS to silica glass, the blend films were calcinated at 100°C. The morphology of the microphase separation of the films was not changed by the calcinations; the calcinated films were transparent. When the molar content of HEMA of P(MMA-co-HEMA) and the molar content of PHPS to HEMA in feed were 14.5% and 150%, respectively, the morphology was well ordered lamellae of PMMA and silica.  相似文献   

20.
N-grafted poly(p-phenylene terephthalamide)s (PPTA) were synthesized from PPTA and acrylonitrile or propylene oxide via metalation in a solution of the polymer in a sodium methylsulfinylcarbanion–dimethyl sulfoxide solvent at low temperatures. The introduction of these branches into the amide groups of PPTA increased solubility but decreased thermal stability. The effects of the branches on thermal properties and solubility are discussed. The structure of the graft copolymers is described on the basis of wide-angle x-ray diffraction, infrared spectra, and solubility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号