首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper deals with the electromagnetoelastic problem of an elastic, conducting circular cylinder with a penny-shaped crack under a uniform axial current flow and a constant axial magnetic field. The current flow is disturbed by the presence of the crack and the torsional stresses are caused by the interactions between the magnetic field and the disturbed current. Two problems concerning the electric current density field and the electromagnetoelastic field are formulated by means of integral transform techniques and reduced to two Fredholm integral equations of the second kind. Numerical calculations are carried out and stress intensity factors are obtained for several values of the geometric parameters.  相似文献   

2.
The stress state of an elastic orthotropic medium with a penny-shaped crack   总被引:2,自引:0,他引:2  
The static-equilibrium problem for an elastic orthotropic space with a circular (penny-shaped) crack is solved. The stress state of an elastic medium is represented as a superposition of the principal and perturbed states. To solve the problem, Willis approach is used, which is based on the triple Fourier transform in spatial variables, the Fourier-transformed Greens function for an anisotropic material, and Cauchys residue theorem. The contour integrals obtained are evaluated using Gauss quadrature formulas. The results for particular cases are compared with those obtained by other authors. The influence of anisotropy on the stress intensity factors is studied.__________Translated from Prikladnaya Mekhanika, Vol. 40, No. 12, pp. 76–83, December 2004.  相似文献   

3.
4.
The axisymmetric dynamic response of a penny-shaped crack in an elastic conductor under an impulsive electric current flow and a constant axial magnetic field is analyzed. The axial current flow is disturbed by the presence of the crack and the torsional shear stresses are caused by the interactions between the magnetic field and the disturbed current. Laplace and Hankel transforms are used to reduce the electromagnetoelastic problem to a Fredholm integral equation of the second kind in the Laplace transform plane. A numerical Laplace inversion routine is used to recover the time dependence of the solution. Numerical results on the dynamic stress intensity factor are obtained and are presented in a graphical form.  相似文献   

5.
In this paper, the scattering of harmonic anti-plane shear waves by a finite crack in infinitely long strip is studied using the non-local theory. The Fourier transform is applied and a mixed boundary value problem is formulated. Then a set of dual integral equations is solved using the Schmidt method instead of the first or the second integral equation method. A one-dimensional non-local kernel is used instead of a two-dimensional one for the anti-plane dynamic problem to obtain the stress occurring at the crack tips. Contraty to the classical elasticity solution, it is found that no stress singularity is present at the crack tip. The non-local dynamic elastic solutions yield a finite hoop stress at the crack tip, thus allowing for a fracture criterion based on the maximum dynamic stress hypothesis. The finite hoop stress at the crack tip depends on the crack length, the width of the strip and the lattice parameter. Supported by the Post Doctoral Science Foundation of Heilongjiang Province, the Natural Science Foundation of Heilongjiang Province and the National Foundation for Excellent Young Investigators.  相似文献   

6.
7.
The interaction of plane waves coming from infinity with an infinitely long elastic rod floating on the surface of a liquid is considered. The liquid is assumed to be ideal and have infinite depth. It is assumed that the rod cannot become separated from the liquid. The parameters of the waves that pass through the rod and are reflected from it are determined, and the force factors in the transverse sections of the rod are found.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 62–67, September–October, 1980.  相似文献   

8.
Influence of a rigid-disc massive inclusion on a neighboring penny-shaped crack induced by the time-harmonic wave propagation in an infinite elastic matrix is investigated by the numerical solution of associated 3D elastodynamic problem. No restrictions on the mutual orientation of interacting objects and direction of wave incidence are assumed. The inclusion is perfectly bonded with a matrix and supposes the translations and rotations, the crack faces are load-free. Frequency-domain problem is reduced to a system of boundary integral equations (BIEs) relative to the interfacial stress jumps (ISJs) on the inclusion and the crack opening displacements (CODs). The subtraction technique in conjunction with mapping technique, under taking into account the structure of solution at the fronts of inclusion and crack, is applied for regularization of BIEs obtained. A discrete analogue of equations is constructed by using the collocation scheme. Numerical calculations are carried out for the grazing incidence of a plane P-wave on the crack, where the interacting inclusion is coplanar and perpendicular to the crack, and has the same radius. The shielding and amplification effects of inclusion are assessed by the analysis of mode-I stress intensity factor (SIF) in the crack vicinity depending on the wave number, incident wave direction, position of the crack front point, inclusion mass, crack-inclusion orientation and distance.  相似文献   

9.
10.
The present paper is aimed at studying a two-dimensional problem for an infinitely long solid conducting circular cylinder with a permeating substance in contact with its bounding surface. The problem is considered in the context of generalized thermoelastic diffusion theory with one relaxation time. The lateral surface of the solid is traction free and subjected to known temperature and chemical potential as functions of time. The solution is obtained by a transform method and a direct approach without the customary use of potential functions. Numerical inversion of the transformed solution is carried out to obtain the temperature, displacement, stress, and concentration of the diffusive material distributions. Numerical results are represented graphically and discussed. The second sound effect and the asymptotic behavior for the solution are discussed.  相似文献   

11.
This paper examines the axisymmetric problem pertaining to a penny-shaped crack which is located at the bonded plane of two similar elastic halfspace regions which exhibit localized axial variations in the linear elastic shear modulus, which has the form G(z)=G1+G2e±ζz. The equations of elasticity governing this type of non-homogeneity are solved by employing a Hankel transform technique. The resulting mixed boundary value problem associated with the penny-shaped crack is reduced to a Fredholm integral equation of the second kind which is solved in a numerical fashion to generate the crack opening mode stress intensity factor at the tip.  相似文献   

12.
Diffraction of normal compression waves by a penny-shaped crack in a fluid-saturated porous medium is investigated. Two wave types are considered, namely, compressional wave of the first kind, and the second kind. The former, also known as fast wave, propagates primarily through the solid, whereas the latter or slow wave, propagates mainly in the fluid. Each wave propagates in the medium along with induced wave of the same type in the companion constituent of the material. Application of Biot’s theory in conjunction with integral transform technique reduces the problem to a mixed boundary-value problem whose solution is in turn governed by a Fredholm integral equation of the second kind. Near-field and far-field solutions are obtained in terms of the dynamic stress-intensity factor and the scattering cross section, respectively. They are of particular importance to the linear elastic fracture mechanics (LEFM) and in the scattering theory of elastic waves. The mode I stress-intensity factors are computed numerically for a set of selected material property values, and shown graphically for various mass density and viscosity-to-permeability ratios. The obtained results reveal significant impact of the presence of pore fluid upon the stress-intensity factors, both magnitudes and frequencies at their peak values. The influence of the fluid is also observed from the calculated scattering cross sections of the scattered far-field. Accuracy of the present solution procedure is verified by comparing the numerical results with existing results in the limiting case of dry elastic materials.  相似文献   

13.
14.
Thermoelastic transient response of multilayered annular cylinders of infinite lengths subjected to known temperature at traction-free inner and outer surfaces are considered. A method based on the Laplace transformation and finite difference method has been developed to analyze the thermoelasticity problem. Using the Laplace transform with respect to time, the general solutions of the governing equation are obtained in transform domain. The solution is obtained by using the matrix similarity transformation and inverse Laplace transform. Solutions for the temperature and thermal stress distributions in a transient state were obtained. It was found that the temperature distribution, the displacement and the thermal stresses change slightly as time increases. There is no limit of number of annular layers of the cylinder in the presented computational procedures.  相似文献   

15.
The Hankel transform and Fourier series are employed to obtain the stress intensity factor for a penny-shaped crack situated away from the mid-plane of a finite radius cylinder under torsion. Results for the case of a concentric penny-shaped crack off the mid-plane of a circular plate with infinite radius can be derived. Another special case is the Mode III deformation of a concentric penny-shaped crack in the mid-plane of a finite cylinder.  相似文献   

16.
We consider the problem of determining the stress intensity factors and the crack energy in an infinitely long isotropic, homogeneous elastic strip containing two coplanar Griffith cracks. We assume that the cracks are opened by an internal pressure and the edges of the strip are rigidly fixed. By the use of Fourier transforms we reduce the problem to solving a set of triple integral equations with cosine kernel and a weight function. The triple integral equations are solved exactly. Exact analytical expressions are derived for the stress intensity factors, shape of the deformed crack and the crack energy. Solutions to some particular problems are derived as limiting cases.This work was supported by the National Research Council of Canada through NRC-Grant No. A4177.  相似文献   

17.
The method of optimal truncation (MOOT) [1, 2], a least-squares boundary-residual method [3] for solving scattering problems, is applied to the plane circular crack. An equatorially cloven spherical inclusion is used to model the crack. Numerical advantages of this model are discussed and demonstrated. Results are given for cross sections for longitudinal waves incident on the crack at arbitrary angles. Both clear cracks and fluid-filled cracks are considered. A refinement of the method which would allow accurate calculation of dynamic stress-intensity factors is developed.  相似文献   

18.
19.
O. Coussy 《Wave Motion》1984,6(3):223-236
A method of perturbation is used to derive an integral representation of the displacement field for the scattering of a plane wave from an inclusion with an interface crack. In the long-wave approximation it is shown that the solution of only an associated static problem is required and formal expressions are derived for the scattered far field amplitudes and scattering cross section. In the case of a cylindrical inclusion the solution of the associated static problem is then used to find in a closed form the corresponding expressions for plane incident P- and S-waves.  相似文献   

20.
The load and force acting on an infinite circular cylinder diffracting a moderately strong shock wave (pressure ratio across the front 1.01–5) are found. The process is simulated mathematically by means of a finite-difference scheme of second order of accuracy. For = 1.4, systematic calculations have been made in a narrow range of shock strengths, which has made it possible to obtain detailed characteristics of not only the transient stage of the process but also the steady state.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 113–119, March–April, 1979.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号