首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 750 毫秒
1.
通过第一性原理,对Na掺杂(NaZn)与Zn空位(VZn)及Na掺杂与O空位(VO)共存的ZnO体系的形成能、电子结构及磁性机理进行了研究.结果表明,Na原子与空位(VZn或VO)空间位置最近时,掺杂体系的形成能最低;与诱导VZn相比,Na掺杂在ZnO体系中更易诱导VO,并且过量的Na掺杂必然导致VO的形成.另外,磁性研究发现,Na掺杂与空位(VZn或VO)共存的体系都具有磁性.并且Na掺杂与VZn共存的ZnO体系磁性源于VZn的本征缺陷,而Na掺杂与VO共存的ZnO体系的磁性源于Na原子与VO的电子关联交互作用.  相似文献   

2.
运用密度泛函理论,计算了Sbzn、Nazn、Sbzn-nNazn掺杂ZnO晶体的稳定性、能带结构和电子态密度.研究发现Sbzn、Nazn、Sbzn-nNazn掺杂ZnO晶体的结构稳定,Sb-Na共掺杂改善了体系的固溶度.能带结构表明,SbZn体系为n型间接带隙半导体材料;NaZn、Sbzn-2NaZn体系为p型半导体材料;Sbzn-NaZn、SbZn-3NaZn体系为本征半导体材料.对p型半导体材料体系的导电性能研究发现,Sbzn-2Nazn体系电导率大于NaZn体系的电导率,即Sbzn-2NaZn掺杂改善了体系的导电性.计算结果为实验制备p型ZnO材料提供了理论指导.  相似文献   

3.
为了研究ZnO:Sb的掺杂机理,本文运用第一性原理密度泛函理论计算了理想纤锌矿ZnO和SbO 、SbZn 、SbZn-2VZn三种Sb掺杂ZnO晶体模型的几何结构、能带结构和电子态密度.计算结果表明:sb的掺人使得晶格发生不同程度的膨胀,其中以SbZn-2VZn复合缺陷模型的膨胀最小,键长最短,说明此结构的化学稳定性最高.通过能带和态密度的分析可知,ShO和SbZn模型存在不合理性,而SbZn-2VZn复合缺陷中的VZn可以使价带产生非局域化空穴载流子.定量计算进一步确认了SbZn-2VZn构型的可填充电子数最多,合理解释了晶体导电性的提高.形成能计算表明,在富氧条件下SbZn-2VZn的形成能最低,说明在富氧条件下掺杂Sb更有利于实现ZnO的p型化.  相似文献   

4.
采用基于密度泛函理论的第一性原理赝势法对Ag掺杂ZnO体系中Ag缺陷和本征缺陷复合体的几何结构、形成能和电子结构进行了比较研究.研究表明,Ag代替Zn位(AgZn)可以在ZnO中形成受主能级.同时,研究发现, Zni-AgZn和Oi-AgZn的形成能较小,存在的可能性较大.其中,Zni-AgZn 呈现明显的n型导电特性,而Oi-AgZn具有p型导电的趋势.因此Oi-AgZn有利于p型ZnO的形成.  相似文献   

5.
为了研究ZnO:Sb的掺杂机理,本文运用第一性原理密度泛函理论计算了理想纤锌矿ZnO和SbO 、SbZn 、SbZn-2VZn三种Sb掺杂ZnO晶体模型的几何结构、能带结构和电子态密度.计算结果表明:sb的掺人使得晶格发生不同程度的膨胀,其中以SbZn-2VZn复合缺陷模型的膨胀最小,键长最短,说明此结构的化学稳定性最高.通过能带和态密度的分析可知,ShO和SbZn模型存在不合理性,而SbZn-2VZn复合缺陷中的VZn可以使价带产生非局域化空穴载流子.定量计算进一步确认了SbZn-2VZn构型的可填充电子数最多,合理解释了晶体导电性的提高.形成能计算表明,在富氧条件下SbZn-2VZn的形成能最低,说明在富氧条件下掺杂Sb更有利于实现ZnO的p型化.  相似文献   

6.
采用密度泛函第一性原理的方法计算了 GaN纳米线、ZnO纳米线及其核/壳纳米线结构的能带结构,价带顶(VBM)和导带底(CBM)的电荷分布.计算表明本征GaN和ZnO纳米线材料VBM和CBM所对应电荷分布较为分散,且与直径关系不大,形成不了II型半导体电荷分离效应.GaN和ZnO组成的核/壳纳米线均保持本征GaN和ZnO纳米线的直接带隙性质.在ZnO包裹GaN的核壳纳米线结构中,不同比例的ZnO和GaN之间电荷转移均不明显, VBM和CBM电荷分布基本都是由壳层的ZnO的O原子占据,难于实现VBM和CBM电荷空间分离.在GaN包裹ZnO的核壳纳米线结构中,VBM电荷和CBM电荷分布分别主要由壳层的N原子占据和核层的O原子占据,同时ZnO和GaN之间的电荷转移量相对较大,容易形成较大的核壳内置电场,有利于促进空间电荷分离,并且随着ZnO的比例增加电荷转移量也相应增加,能有效的促进电荷分离有利于制备成 II型半导体.  相似文献   

7.
WS2由于其优异的物理和光电性质引起了广泛关注。本研究基于第一性原理计算方法,探索了本征单层WS2及不同浓度W原子替位钇(Y)掺杂WS2的电子结构和光学特性。结果表明本征单层WS2为带隙1.814 eV的直接带隙半导体。进行4%浓度(原子数分数)的Y原子掺杂后,带隙减小为1.508 eV,依旧保持着直接带隙的特性,随着Y掺杂浓度的不断增大,掺杂WS2带隙进一步减小,当浓度达到25%时,能带结构转变为0.658 eV的间接带隙,WS2表现出磁性。适量浓度的掺杂可以提高材料的导电性能,且掺杂浓度增大时,体系依旧保持着透明性并且在红外光和可见光区对光子的吸收能力、材料的介电性能都有着显著提高。本文为WS2二维材料相关光电器件的研究提供了理论依据。  相似文献   

8.
采用基于密度泛函理论框架下的第一性原理平面波超软赝势(USP)方法,结合广义梯度近似(GGA)计算了岩盐结构(B1)和纤锌矿结构(B4)ZnO的相变、弹性性质,并分析了B1和B4相ZnO在相变点处的电子结构特征.计算结果表明:ZnO在12.72 GPa时发生了由B4相向B1相的转变.B1和B4相ZnO的体弹性模量分别为171.5 GPa和132.8 GPa.能带结构的结果表明B1相是间接带隙半导体,带隙值为1.404 eV,而B4相是直接带隙半导体,带隙值为1.107 eV.  相似文献   

9.
本文采用基于密度泛函理论的第一性原理计算了不同浓度Nb掺杂ZnO的能带结构及性能,并对本征ZnO、Al掺杂ZnO(AZO)和Nb掺杂ZnO(NZO)的模拟结果进行对比分析。结果表明:(1)NZO和AZO的带隙值均低于本征ZnO的带隙值,掺杂浓度(原子数分数)同为6.25%的NZO的带隙值低于AZO的带隙值。随着Nb掺杂浓度增高,NZO的导带底明显降低,态密度峰值降低,且Nb-4d态电子占据了费米能级的主要量子态。(2)随着掺杂浓度的增加,NZO和AZO吸收峰和介电函数峰均降低,且向低能区移动,其中,NZO吸收峰向低能区移动更明显,且介电函数虚部分别在0.42 eV和34.29 eV出现新的峰,主要是价带中Nb-4d和Nb-5p电子能级跃迁所致。掺杂浓度同为6.25%的NZO的静介电常数大于AZO的静介电常数,表明NZO极化能力更强,NZO可以更有效改善ZnO的光电性能。随着Nb掺杂浓度增加,NZO的吸收系数和介电函数虚部强度增加且向高能区移动。NZO的模拟结果为高价态元素Nb掺杂ZnO的实验研究工作及实际应用提供了理论参考。  相似文献   

10.
采用两步法在二氧化锡掺氟(SnO2:F,FTO)导电玻璃基板上制备出钇(Y)掺杂多孔结构氧化锌(ZnO)纳米棒,首先利用浸渍-提拉法在FTO导电玻璃基板上制备ZnO晶种层,然后利用水热法在ZnO晶种层上生长Y掺杂ZnO纳米棒.研究了不同浓度Y掺杂ZnO纳米棒的晶相结构、微观形貌、化学组成及光学性能.实验结果表明:所制备的Y掺杂ZnO纳米棒为沿c轴择优取向生长的六方纤锌矿结构,随着Y掺杂浓度的增加,ZnO纳米棒(002)衍射峰强度先增大后减小,纳米棒的平均长度由1.3μm增加到2.6μm.ZnO纳米棒的形貌由锥状结构向柱状结构演化,纳米棒侧面的孔洞分布密度增加.所制备的Y掺杂ZnO纳米棒具有一个较弱的紫外发光峰和一个较强的宽可见发光峰.所制备样品的光学带隙随着Y掺杂浓度的增加而减小,其光学带隙在3.29~3.21 eV之间变化.利用Y掺杂ZnO纳米棒作为量子点敏化太阳能电池的光阳极可极大提高太阳电池的光电转换效率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号