首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Physics letters. [Part B]》1988,206(2):271-275
Within the supersymmetric flipped SU(5)×U(1) model, we propose a mechanism for realization of the Voloshin-Vysotsky-Okun solution to the solar neutrino problem by attributing a large magnetic moment to the electron neutrino, as required to explain the solar neutrino data.  相似文献   

2.
Consider the most general 3 x 3 Majorana neutrino mass matrix M. Motivated by present neutrino-oscillation data, much theoretical effort is directed at reducing it to a specific texture in terms of a small number of parameters. This procedure is often ad hoc. I propose instead that for any M one may choose, it should satisfy the condition UMU(T)=M, where U not equal 1 is a specific unitary matrix such that U(N) represents a well-defined discrete symmetry in the nu(e,micro,tau) basis, N being a particular integer not necessarily equal to 1. I illustrate this idea with a number of examples, including the realistic case of an inverted hierarchy of neutrino masses.  相似文献   

3.
The China Jinping Underground Laboratory(CJPL), which has the lowest cosmic-ray muon flux and the lowest reactor neutrino flux of any laboratory, is ideal to carry out low-energy neutrino experiments. With two detectors and a total fiducial mass of 2000 tons for solar neutrino physics(equivalently, 3000 tons for geo-neutrino and supernova neutrino physics), the Jinping neutrino experiment will have the potential to identify the neutrinos from the CNO fusion cycles of the Sun, to cover the transition phase for the solar neutrino oscillation from vacuum to matter mixing, and to measure the geo-neutrino flux, including the Th/U ratio. These goals can be fulfilled with mature existing techniques. Efforts on increasing the target mass with multi-modular neutrino detectors and on developing the slow liquid scintillator will increase the Jinping discovery potential in the study of solar neutrinos,geo-neutrinos, supernova neutrinos, and dark matter.  相似文献   

4.
We report the direct measurement of the 7Be solar neutrino signal rate performed with the Borexino detector at the Laboratori Nazionali del Gran Sasso. The interaction rate of the 0.862 MeV 7Be neutrinos is 49+/-3stat+/-4syst counts/(day.100 ton). The hypothesis of no oscillation for 7Be solar neutrinos is inconsistent with our measurement at the 4sigma C.L. Our result is the first direct measurement of the survival probability for solar nu(e) in the transition region between matter-enhanced and vacuum-driven oscillations. The measurement improves the experimental determination of the flux of 7Be, pp, and CNO solar nu(e), and the limit on the effective neutrino magnetic moment using solar neutrinos.  相似文献   

5.
The observation of neutrino oscillations requires new physics beyond the standard model (SM).A SM-like gauge theory with p lepton families can be extended by introducing q heavy right-handed Majorana neutrinos but preserving its SU(2)L x U(1)y gauge symmetry.The overall neutrino mass matrix M turns out to be a symmetric (p+q) x (p+q) matrix.Given p>q,the rank of M is in general equal to 2q,corresponding to 2q non-zero mass eigenvalues.The existence of (p-q) massless left-handed Majorana neutrinos is an exact consequence of the model,independent of the usual approximation made in deriving the Type-I seesaw relation between the effective p x p light Majorana neutrino mass matrix M,and the q x q heavy Majorana neutrino mass matrix MR.In other words,the numbers of massive left- and right-handed neutrinos are fairly matched.A good example to illustrate this "seesaw fair play rule"is the minimal seesaw model with p = 3 and q = 2,in which one masslese neutrino sits on the unbalanced seesaw.  相似文献   

6.
A generalized mixing matrix for leptons is presented based on a composite model of quarks and leptons. The mixing matrix is expressed in terms of one parameter, which is determined either by discussing that it is identical to that of the quark mixing matrix or by assuming that the observed solar neutrino flux results from neutrino oscillations.  相似文献   

7.
Using a 3 + 1 neutrino model with one sterile and the three standard active neutrinos with a 4 × 4 unitary transformation matrix, U, relating flavor to mass neutrino states, the probability of ν μ to ν e transition is estimated using sterile-active neutrino masses determined by MiniBooNE and other experiments and sterile-active neutrino angles in the 4 × 4 U matrix.  相似文献   

8.
Since the pioneering experiment of R. Davis et al., which started neutrino astronomy by measuring the solar neutrinos via the inverse beta decay reaction on 37Cl, all solar neutrino experiments find a considerably lower flux than expected by standard solar models. This finding is generally called the solar neutrino problem. Many attempts have been made to explain this result by altering the solar models, or assuming different nuclear cross sections for fusion processes assumed to be the energy sources in the sun.There have been performed numerous experiments recently to investigate the different possibilities to explain the solar neutrino problem. These experiments covered solar physics with helioseismology, nuclear cross section measurements, and solar neutrino experiments.Up to now no convincing explanation based on “standard” physics was suggested. However, assuming nonstandard neutrino properties, i.e. neutrino masses and mixing as expected in most extensions of the standard theory of elementary particle physics, natural solutions for the solar neutrino problem can be found.It appears that with this newly invented neutrino astronomy fundamental information on astrophysics as well as elementary particle physics are tested uniquely. In this contribution an attempt is made to review the situation of the neutrino astronomy for solar neutrino spectroscopy and discuss the future prospects in this field.  相似文献   

9.
The neutrino parameters determined from the solar neutrino data and the anti-neutrino parameters determined from KamLAND reactor experiment are in good agreement with each other. However, the best fit points of the two sets differ from each other by about 10−5 eV2 in mass-square difference and by about 2° in the mixing angle. Future solar neutrino and reactor anti-neutrino experiments are likely to reduce the uncertainties in these measurements. This, in turn, can lead to a signal for CPT violation in terms a non-zero difference between neutrino and anti-neutrino parameters. In this paper, we propose a CPT violating mass matrix which can give rise to the above differences in both mass-squared difference and mixing angle and study the constraints imposed by the data on the parameters of the mass matrix.  相似文献   

10.
We briefly outline the two popular approaches on radiative corrections to neutrino masses and mixing angles, and then carry out a detailed numerical analysis for a consistency check between them in MSSM. We find that the two approaches are nearly consistent with a discrepancy factor of 4.2% with running vacuum expectation value (VEV) (13% for scale-independent VEV) in mass eigenvalues at low-energy scale but the predictions on mixing angles are almost consistent. We check the stability of the three types of neutrino models, i.e., hierarchical, inverted hierarchical and degenerate models, under radiative corrections, using both approaches, and find consistent conclusions. The neutrino mass models which are found to be stable under radiative corrections in MSSM are the normal hierarchical model and the inverted hierarchical model with opposite CP parity. We also carry out numerical analysis on some important conjectures related to radiative corrections in the MSSM, viz., radiative magnification of solar and atmospheric mixings in the case of nearly degenerate model having same CP parity (MPR conjecture) and radiative generation of solar mass scale in exactly two-fold degenerate model with opposite CP parity and non-zero Ue3 (JM conjecture). We observe certain exceptions to these conjectures. We find a new result that both solar mass scale and Ue3 can be generated through radiative corrections at low energy scale. Finally the effect of scaledependent vacuum expectation value in neutrino mass renormalisation is discussed  相似文献   

11.
We present a necessary condition on the solar oscillation amplitude for CP violation to be detectable through neutrinoless double beta (0νββ) decay. It depends only on the fractional uncertainty in the νe–νe element of the neutrino mass matrix. We demonstrate that even under very optimistic assumptions about the sensitivity of future experiments to the absolute neutrino mass scale, and on the precision with which nuclear matrix elements that contribute to 0νββ decay are calculable, it will be impossible to detect neutrino CP violation arising from Majorana phases.  相似文献   

12.
Following recent results from the SNO solar neutrino experiment and the K2K long-baseline neutrino experiment, the combined existing data on neutrino oscillations now point strongly to a specific form for the lepton mixing matrix, with effective bimaximal mixing of νμ and ντ at the atmospheric scale and effective trimaximal mixing for νe with νμ and ντ at the solar scale (hence ‘tri-bimaximal’ mixing). We give simple mass-matrices leading to tri-bimaximal mixing, and discuss its relation to the Fritzsch–Xing democratic ansatz.  相似文献   

13.
It has been observed that simultaneous explanation of the solar and atmospheric neutrino deficits and the reported evidence for oscillation from the Los Alamos Liquid Scintillator Detector (LSND) requires at least one extra neutrino species in addition to the three known ones. The extra neutrino must be sterile with respect to the known weak interactions. We present a new mass matrix for these four neutrinos in which the LSND effect and the atmospheric neutrino deficit are governed by only one parameter. We investigate the phenomenological implications of such a mass matrix ansatz and suggest possible ways to understand it in gauge theories.  相似文献   

14.
We update our earlier study [Phys. Lett. B 544 (2002) 239], which was inspired by the 2002 SNO data, on the implications of the results of the solar neutrino experiments for the predictions of the effective Majorana mass in neutrinoless double beta-decay, |m|. We obtain predictions for |m| using the values of the neutrino oscillation parameters, obtained in the analyzes of the presently available solar neutrino data, including the just published data from the salt phase of the SNO experiment, the atmospheric neutrino and CHOOZ data and the first data from the KamLAND experiment. The main conclusion reached in the previous study [Phys. Lett. B 544 (2002) 239] of the existence of significant lower bounds on |m| in the cases of neutrino mass spectrum of inverted hierarchical (IH) and quasi-degenerate (QD) type is strongly reinforced by fact that combined solar neutrino data (i) exclude the possibility of cos2θ=0 at more than 5 s.d., (ii) determine as a best fit value cos2θ=0.40, and (iii) imply at 95% C.L. that cos2θ0.22, θ being the solar neutrino mixing angle. For the IH and QD spectra we get using, e.g., the 90% C.L. allowed ranges of values of the oscillation parameters, |m|0.010 eV and |m|0.043 eV, respectively. We also comment on the possibility to get information on the neutrino mass spectrum and on the CP-violation in the lepton sector due to Majorana CP-violating phases.  相似文献   

15.
Recent neutrino experiments suggest strong evidence of tiny neutrino masses and the lepton-flavor mixing. Neutrino-oscillation solutions for the atmospheric neutrino anomaly and the solar neutrino deficit can determine the texture of the neutrino mass matrix according to the neutrino mass hierarchies as Type A: , Type B: , and Type C: , where is the i-th generation neutrino mass. In this paper we study the stability of the lepton-flavor mixing matrix against quantum corrections for all three types of mass hierarchy in the minimal supersymmetric Standard Model with an effective dimension-five operator which gives the Majorana masses of neutrinos. The relative sign assignments of neutrino masses in each type play crucial role for the stability against quantum corrections. We find that the lepton-flavor mixing matrix of Type A is stable against quantum corrections, and that of Type B with the same (opposite) signs of and are unstable (stable). For Type C, the lepton-flavor-mixing matrix approaches the definite unitary matrix according to the relative sign assignments of the neutrino mass eigenvalues as the effects of quantum corrections become large enough to neglect the squared mass differences of neutrinos. Received: 24 June 1999 / Revised version: 23 December 1999 / Published online: 17 March 2000  相似文献   

16.
Neutrino-oscillation solutions for the atmospheric neutrino anomaly and the solar neutrino deficit can determine the texture of the neutrino mass matrix according to three types of neutrino mass hierarchy: Type A: , Type B: , and Type C: , where is the absolute mass of the ith generation neutrino. The relative sign assignments of the neutrino masses in each type of mass hierarchy play crucial roles in the stability against quantum corrections. Actually, two physical Majorana phases in the lepton flavor mixing matrix connect the relative sign assignments of the neutrino masses. Therefore, in this paper we analyze the stability of the mixing angles against quantum corrections according to three types of neutrino mass hierarchy (Type A, B, C) and two Majorana phases. The two phases play crucial roles in the stability of the mixing angles against quantum corrections. Received: 9 May 2000 / Revised version: 23 May 2000 / Published online: 8 September 2000  相似文献   

17.
We study the matter effects for solar neutrino oscillations in a general scheme, without any constraint on the number of sterile neutrinos and the mixing matrix elements, only assuming a realistic hierarchy of neutrino squared-mass differences in which the smallest squared-mass difference is effective in solar neutrino oscillations. The validity of the analytic results is illustrated with a numerical solution of the evolution equation in the simplest case of four-neutrino mixing with the realistic matter density profile inside the Sun.  相似文献   

18.
The physics potential of GENIUS, a recently proposed double beta decay and dark matter experiment is discussed. The experiment will allow to probe neutrino masses down to 10?(2–3) eV. GENIUS will test the structure of the neutrino mass matrix, and therefore implicitly neutrino oscillation parameters comparable or superior in sensitivity to the best proposed dedicated terrestrial neutrino oscillation experiments. If the 10-3 eV level is reached, GENIUS will even allow to test the large angle MSW solution of the solar neutrino problem. Even in its first stage GENIUS will confirm or rule out degenerate or inverted neutrino mass scenarios, which have been widely discussed in the literature as a possible solution to current hints on finite neutrino masses and also test the νe ? νμ hypothesis of the atmospheric neutrino problem. GENIUS would contribute to the search for R-parity violating SUSY and right-handed W-bosons on a scale similar or superior to LHC. In addition, GENIUS would largely improve the current 0νββ decay searches for R-parity conserving SUSY and leptoquarks. Concerning cold dark matter (CDM) search, the low background anticipated for GENIUS would, for the first time ever, allow to cover the complete MSSM neutralino parameter space, making GENIUS competitive to LHC in SUSY discovery. If GENIUS could find SUSY CDM as a by-product it would confirm that R-parity must be conserved exactly. GENIUS will thus be a major tool for future non-accelerator particle physics.  相似文献   

19.
We present the results of a search for low energy nu(e) from the Sun using 1496 days of data from Super-Kamiokande-I. We observe no significant excess of events and set an upper limit for the conversion probability to nu(e) of the 8B solar neutrino. This conversion limit is 0.8% (90% C.L.) of the standard solar model's neutrino flux for total energy=8-20 MeV. We also set a flux limit for monochromatic nu(e) for E(nu(e))=10-17 MeV.  相似文献   

20.
The rate of neutrino-electron elastic scattering interactions from 862 keV (7)Be solar neutrinos in Borexino is determined to be 46.0±1.5(stat)(-1.6)(+1.5)(syst)?counts/(day·100 ton). This corresponds to a ν(e)-equivalent (7)Be solar neutrino flux of (3.10±0.15)×10(9) cm(-2)?s(-1) and, under the assumption of ν(e) transition to other active neutrino flavours, yields an electron neutrino survival probability of 0.51±0.07 at 862 keV. The no flavor change hypothesis is ruled out at 5.0?σ. A global solar neutrino analysis with free fluxes determines Φ(pp)=6.06(-0.06)(+0.02)×10(10) cm(-2)?s(-1) and Φ(CNO)<1.3×10(9) cm(-2)?s(-1) (95% C.L.). These results significantly improve the precision with which the Mikheyev-Smirnov-Wolfenstein large mixing angle neutrino oscillation model is experimentally tested at low energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号