首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
在托卡马克KT-5C上,我们首次采用可灵活组合的多块限制器进行了施加偏压以控制等离子体边缘电场的实验。结果表明,在本装置上限制器加正偏压优于加负偏压、正偏压改变等离子体边缘电场效果更明显。偏压限制器收集面积、纵场和偏置电压的大小对偏压效果的影响都是敏感的。改变限制器收集面积和偏压导致的边缘电场的变化最终将趋于饱和。  相似文献   

2.
在KT-5C托卡马克上,采用多块组合的可偏压限制器控制等离子体边缘电场.进行了改善等离子体的边缘参数及其机制的研究.实验显示,限制器的正、负偏压都能改变等离子体电位,但正偏压更有效,能有效地建立边缘电场,进而抑制边缘扰动改善等离子体约束.利用可移动静电探针,测得正偏压期间边缘电子温度T_e(r)、电子密度n_e(r)、空间电位V_p(r)分布变陡,与计算得到的边缘粒子通量Г(a_(?))减少,整体粒子约束时间τ_p增加结果是一致的.  相似文献   

3.
高辉  翟侃 《物理学报》1995,44(9):1435-1441
在KT-5C托卡马克上,采用多块组合的可偏压限制器控制等离子体边缘电场,进行了改善等离子体的边缘参数及其机制的研究。实验显示,限制器的正、负偏压都能改变等离子体电位,但正偏压更胶儿,能有效地建立边缘电场,进而抑制边缘扰动改善等离子体约束。利用可移动静电探针,测得正偏压期间边缘电子温度Te(r)、电子密度ne(r)、空间电位Vp(r)分布变陡,与计算得到的边缘粒子通量Г(a0)减少,整体粒子约束时间  相似文献   

4.
介绍了回旋质谱探测器的原理和设计及其在HT-7 装置欧姆放电下对边缘等离子体中离子的诊断实验。探测器安装在限制器附近, 通过一小孔引进等离子体; 设置的前置偏压使电子和离子分离, 并使离子减速; 进入腔体内部的离子在射频电场和平行磁场的作用下发生回旋共振; 通过考察收集的离子电流信号中的共振峰可得到离子的荷质比、回旋频率等参数。实验中观察到荷质比为1、0. 5、0. 3333、0 . 1819 的离子共振峰。  相似文献   

5.
通过电极偏压来控制KT 5C装置边缘区等离子体的径向电场 ,发现在正偏压作用下 ,径向电场剖面由小的负阱状变成明显的山包结构 ,从而形成一个加强的E×B剪切层。剪切层附近的等离子体参数变陡 ,不仅等离子体极向流速度大大增加 ,而且其方向也由沿电子逆磁漂移方向改变为离子的逆磁漂移方向。这些变化导致等离子体边界横向输运被抑制、整体约束得到改善  相似文献   

6.
针对激光等离子体在Cu靶上诱导产生的电势信号展开实验研究,主要讨论了靶材偏置低电压时对电势信号的影响. 实验结果表明,外加低电压时,靶上电势信号呈现单峰脉冲结构,且靶材偏置负压时为正脉冲,偏置正压时为负脉冲,脉冲幅值随偏置电压增大而增大. 通过对靶上电势信号演化特性的详细分析,从等离子体荷电效应出发,结合靶材偏压造成的电场效应成功解释了靶材偏压对靶上电势信号的影响.  相似文献   

7.
利用四探针方法系统地研究了KT-5C托卡马克边缘等离子体的湍流性质。实验结果指出,在限制器内0.5cm处,有一自然产生的径向电场剪切层,由Er×B引起的等离子体整体的极向旋转在剪切层外沿着离子逆磁漂移方向,而在剪切层内则是沿着电子逆漂移方向的。  相似文献   

8.
叶超  杜伟  宁兆元  程珊华 《物理学报》2003,52(7):1802-1807
研究了电子回旋共振等离子体增强化学气相沉积系统中栅网的增加和栅网上施加+60V和-60V偏压对CHF3放电等离子体特性的影响.发现在低微波功率下栅网与偏压对等离子 体中基团分布的影响较大,而高微波功率下的影响逐渐减小.这是由于低微波功率下等离子体中电子温度较低,基团的分布同时受栅网鞘电场和电子碰撞分解的共同作用;而高微波功率下电子温度较高,栅网鞘电场的作用减弱,基团分布主要取决于电子碰撞分解作用. 关键词: 电子回旋共振放电 3分解')" href="#">CHF3分解 栅网 偏压  相似文献   

9.
研究了电子回旋共振等离子体增强化学气相沉积系统中栅网的增加和栅网上施加+60V和-60V偏压对CHF3放电等离子体特性的影响.发现在低微波功率下栅网与偏压对等离子体中基团分布的影响较大,而高微波功率下的影响逐渐减小.这是由于低微波功率下等离子体中电子温度较低,基团的分布同时受栅网鞘电场和电子碰撞分解的共同作用;而高微波功率下电子温度较高,栅网鞘电场的作用减弱,基团分布主要取决于电子碰撞分解作用.  相似文献   

10.
针对激光等离子体在Cu靶上诱导产生的电势信号展开实验研究,主要讨论了靶材偏置低电压时对电势信号的影响. 实验结果表明,外加低电压时,靶上电势信号呈现单峰脉冲结构,且靶材偏置负压时为正脉冲,偏置正压时为负脉冲,脉冲幅值随偏置电压增大而增大. 通过对靶上电势信号演化特性的详细分析,从等离子体荷电效应出发,结合靶材偏压造成的电场效应成功解释了靶材偏压对靶上电势信号的影响. 关键词: 激光等离子体 电势 金属元靶 偏置电压  相似文献   

11.
The 2D multifluid code TECXY has been used to model the experimental biasing of the toroidal belt limiter ALT-II on the tokamak TEXTOR-94 with respect to the first wall. It is well known that the edge flow pattern can be influenced by the poloidal electric drifts from imposing radial electric fields. The modelling with TECXY introduces imprinted bias currents in the scrape-off layer for the case of negative (limiter) biasing, and imprinted bias potentials for the case of positive biasing. This allows to simulate sufficiently well the experimental current-voltage characteristics for either biasing and also reproduces the essential features and trends of the observed plasma profiles in the SOL. A moderate negative biasing is found to be optimal for the exhaust efficiency of the pump limiter.  相似文献   

12.
Blob control by creating convective cells using biased electrodes is demonstrated in simple magnetized toroidal plasmas. A two-dimensional array of electrodes is installed on a metal limiter to obtain different biasing schemes. Detailed two-dimensional measurements across the magnetic field reveal the formation of a convective cell, which shows a high degree of uniformity along the magnetic field. Depending on the biasing scheme, radial and vertical blob velocities can be varied significantly. A high level of cross-field currents limits the achievable potential variations to values well below the applied bias voltage. Furthermore, the strongest potential variations are not induced along the biased flux tube, but at a position shifted in the direction of plasma flows.  相似文献   

13.
The superconducting tokamak Tore Supra will be equipped with an actively cooled toroidal pump limiter (TPL), in the framework of the CIEL (Composants Internes Et Limiteurs) project, dedicated to plasma facing component design for steady state operation. The TPL is equipped with throats, located only on the high field side, for particle collection allowing the control of plasma density which is essential for long plasma discharges. The present design work of the CIEL includes a biasing system in order to enhance the particle pumping. A fluid model, based on the classical fluid equation, is used to estimate the effects of the electric field on the particle flows in the Scrape-Off Layer (SOL). The modifications of the density, the particle flow (toroidal and poloidal) and the position of the stagnation point are discussed as a function of the bias voltage. The model clearly illustrates the different resulting effects on particle pumping for a divertor and a limiter configuration which are designed respectively for poloidal or parallel particle collection. The model is used to interpret the ALT-biasing experiments recently carried out on TEXTOR-94. The pumping capability is shown to be improved by about (15–20)% for positive biasing while the experimental measurements of parallel Mach number are reproduced as a function of the applied voltage. The e-folding length of the edge density in the SOL is also shown to increase from 1.5 to about 2.0 cm for a biased voltage of −400 to 400 V, respectively, in accordance with the model. Finally, the model is used to extrapolate the TEXTOR-94 results to CIEL suggesting that pumping speed enhancement of 25 to 30% may be obtained. Partner in Trilateral Euregio Cluster Partner in Trilateral Euregio Cluster Presented at the Workshop on Role of Electric Fields in Plasma Confinement and Exhaust, Budapest, 18–19 June 2000.  相似文献   

14.
The influence of limiter biasing on plasma confinement, turbulence and plasma flows has been investigated in the TJ-II stellarator. Experimental results show that it is possible to modify global particle confinement and edge plasma parameters with both positive and negative biasing. Significant and minor modifications in the structure of plasma fluctuations have been observed during the transition to improved confinement regimes induced by limiter biasing. These results show evidence of electric field induced improved confinement via multiple mechanisms. The investigation of the relaxation of plasma potential and electric fields shows evidence of two different characteristic decay times.  相似文献   

15.
The high-energy current of runaway electrons during a major disruption in tokamak reactors can cause serious damage to the first wall of the reactors and reduce their life time. Therefore, finding a method to minimize runaway electron generation during a major disruption is much needed. Tokamak limiter biasing is one of the methods that can be used for controlling the radial electric field and can induce a transition to an improved confinement state. This paper attempts to examine the effect of limiter biasing on the generation of runaway electrons during a major disruption. To do so, a horizontal biased limiter placed on the tokamak was used. Main parameters such as plasma current, loop voltage, emitted hard X-ray intensity, magnetohydrodynamic (MHD) oscillation and Hα radiation and spectrum of hard X-rays, in the presence and absence of negative and positive limiter biasing, were measured. The results show that the application of limiter biasing during a major disruption can reduce runaway electron generation.  相似文献   

16.
A hot limiter biasing system with a simplified fast switch circuit was designed, constructed, and installed on the IR-T1 tokamak, and then the negative voltage applied to a hot limiter inserted inside the tokamak fixed limiter and the plasma current, poloidal, and radial components of the magnetic fields, loop voltage, diamagnetic flux, and the ion saturation currents in the absence and presence of the biased limiter were measured. Results of measurements of biasing effects on the plasma equilibrium behavior and edge plasma rotation are compared and discussed.  相似文献   

17.
Radial electric fields (E r) and their role in the establishment of edge transport barriers and improved confinement have been studied in the tokamaks TEXTOR-94 and CASTOR, where E r is externally applied to the plasma in a controlled way using a biased electrode, as well as in the tokamak T-10 where an edge transport barrier (H-mode) is obtained during electron-cyclotron resonance heating (ECRH) of the plasma.The physics of radial currents was studied and the radial conductivity in the edge of TEXTOR-94 (R = 1.75 m, a = 0.46 m) was found to be dominated by recycling (ion-neutral collisions) at the last closed flux surface (LCFS) and by parallel viscosity inside the LCFS. From a performance point of view (edge engineering), such electrode biasing was shown to induce a particle transport barrier, a reduction of particle transport, and a concomitant increase in energy confinement. An H-mode-like behaviour can be induced both with positive and negative electric fields. Positive as well as negative electric fields were shown to strongly affect the exhaust of hydrogen, helium, and impurities, not only in the H-mode-like regime.The impact of sheared radial electric fields on turbulent structures and flows at the plasma edge is investigated on the CASTOR tokamak (R = 0.4 m, a = 0.085 m). A non-intrusive biasing scheme that we call "separatrix biasing" is applied whereby the electrode is located in the scrape-off layer (SOL) with its tip just touching the LCFS. There is evidence of strongly sheared radial electric field and E×B flow, resulting in the formation of a transport barrier at the separatrix. Advanced probe diagnosis of the edge region has shown that the E×B shear rate that arises during separatrix biasing is larger than for standard edge plasma biasing. The plasma flows, especially the poloidal E×B drift velocity, are strongly modified in the sheared region, reaching Mach numbers as high as half the sound speed. The corresponding shear rates ( 5×106 s-1) derived from both the flow and electric field profiles are in excellent agreement and are at least an order of magnitude higher than the growth rate of unstable turbulent modes as estimated from fluctuation measurements.During ECRH in the tokamak T-10 (R = 1.5 m, a = 0.3 m), a regime of improved confinement is obtained with features resembling those in the H-mode in other tokamaks. Using a heavy ion beam probe, a narrow potential well is observed near the limiter together with the typical features of the L-H transition. The time evolution of the plasma profiles during L-H and H-L transitions is clearly correlated with that of the density profile and the formation of a transport barrier near the limiter. The edge electric field is initially positive after the onset of ECRH. It changes its sign during the L-H transition and grows till a steady condition is reached. Similar to the biasing experiments in TEXTOR-94 and CASTOR, the experimentally observed transport barrier is a barrier for particles.  相似文献   

18.
HT-7超导托卡马克调制电流改善等离子体约束   总被引:2,自引:2,他引:0       下载免费PDF全文
 在HT-7超导托卡马克上进行了电流调制改善等离子体约束物理实验,获得了初步的实验结果。对电流调制时的径向电场进行了数值计算和讨论。当等离子体环向电流以适当的频率和幅值周期性调制时,低模数的磁流体不稳定性得到明显的抑制,等离子体中心电子温度增加了33%,等离子体电子密度分布明显陡化,能量约束时间增加了27%~45%。杂质辐射周期性减少,粒子约束时间增加了2倍。在等离子体边界产生更强的径向负电场。  相似文献   

19.
An experiment to investigate the source of plasma equilibrium of the residual plasma at zero cross over of plasma current is presented. The role of limiter in providing this equilibrium by short circuiting the electric field developed due to the toroidal drifts is examined by measuring the current flowing through the limiter. The role of a fast poloidal rotation observed by a set of Mach probes, during zero cross over is also examined in providing the equilibrium. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Measurements of the radial electric field profile in magnetically confined plasmas have yielded important new insights in the physics of L-H transitions, edge biasing and/or the active control of Internal and Edge Transport Barriers. The radial electric field is not an easy plasma parameter to diagnose. Techniques to measure the radial electric field in the plasma core are the Heavy Ion Beam Probe and the Motional Stark Effect. An indirect method that is quite often applied is to derive the electric field from measurements of the poloidal and toroidal rotation velocities via the radial ion force balance. This paper will first briefly explain the need for detailed measurements of the radial electric field profile. Subsequently, the various diagnostics to measure this parameter will be reviewed. The emphasis will be especially put on recent trends, rather than on an exhaustive overview. Presented at 5th Workshop “Role of Electric Fields in Plasma Confinement and Exhaust”, Montreux, Switzerland, June 23–24, 2002. Partner in the Trilateral Euregio Cluster  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号