首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Psoralen photooxidation products (POP products) were obtained by UVA irradiation (365 nm, 180-640 W/m2) of an aqueous psoralen solution with fluences of 0-800 kJ/m2. Preincubation of POP products with glutathione peroxidase (GSHPer) or catalase, as well as presence of catalase during UVA irradiation of the aqueous psoralen solution did not influence their hemolytic activity. However, both GSHPer and catalase inhibited POP-induced conversion of methemoglobin. This indicates that hydrogen peroxide and psoralen peroxides destructible by GSHPer, which are being produced during psoralen photooxidation, do not possess hemolytic activity. Furthermore, hydrogen peroxide does not appear to serve as an intermediate in the process of hemolysin formation. Hydrogen peroxide generated during psoralen photooxidation is apparently the main POP product responsible for MetHb conversion.  相似文献   

2.
Photoaging is induced by long‐term ultraviolet A (UVA) eye irradiation. However, the mechanism of skin damage due to UVA eye irradiation is still not well understood. In this study, we used C57BL/6j and gp91phox knockout (gp91phox?/?) mice for the long‐term effects of UVA irradiation. The eye or dorsal skin of the mice was locally exposed to UVA for 12 months. The reactive oxygen species (ROS), gp91phox, corticotropin‐releasing hormone (CRH), urocortin 2, and CRH receptor (CRHR) type 1 and type 2 levels in the brain and mast cell tryptase and histamine levels in the dorsal skin all increased after UVA irradiation. The levels of CRH, urocortin 2, CRHR type 1 and type 2 in the brain also increased more after UVA eye irradiation than after UVA skin irradiation. Moreover, photoaging of the UVA eye irradiation mice was not induced following the administration of a ROS inhibitor in the brain. In addition, in gp91phox?/? mice, photoaging by UVA eye irradiation was not induced. These results indicate that long‐term UVA eye irradiation led to increased gp91phox‐derived ROS in the brain and the increased expression of urocortin 2 and CRHR type 2, resulting in photoaging; however, further studies are needed to confirm these findings.  相似文献   

3.
Ultraviolet-A (UVA) radiation causes significant oxidative stress because it leads to the generation of reactive oxygen species (ROS), leading to extensive cellular damage and eventual cell death either by apoptosis or necrosis. We evaluated the protective effects of cyanidin-3-O-beta-glucopyranoside (C-3-G) against UVA-induced apoptosis and DNA fragmentation in a human keratinocyte cell line (HaCaT). Treatment of HaCaT cells with C-3-G before UVA irradiation inhibited the formation of apoptotic cells (61%) and DNA fragmentation (54%). We also investigated antioxidant properties of C-3-G in HaCaT cells against ROS formation at apoptotic doses of UVA; C-3-G inhibited hydrogen peroxide (H2O2) release (an indicator of cellular ROS formation) after UVA irradiation. Further confirmation of the potential of C-3-G to counteract UVA-induced ROS formation comes from our demonstration of its ability to enhance the resistance of HaCaT cells to the apoptotic effects of both H2O2 and the superoxide anion (O2*-), two ROS involved in UVA-oxidative stress. Furthermore, in terms of Trolox Equivalent Antioxidant Activity, C-3-G treatment led to a greater increase in antioxidant activity in the membrane-enriched fraction than in the cytosol (55% vs 19%). The protective effects against UVA-induced ROS formation can be attributed to the higher membrane levels of C-3-G incorporation. These encouraging in vitro results support further research into C-3-G (and other anthocyanins) as novel agents for skin photoprotection.  相似文献   

4.
A method for the determination of hydrogen peroxide and several organic peroxides by high-performance liquid chromatography with post-column UV irradiation, derivatization and fluorescence detection is described. By means of post-column UV irradiation in the presence of water organic peroxides are converted into hydrogen peroxide and organic hydroperoxides, which react rapidly with the post-column derivatization agent p-hydroxyphenylacetic acid (PHPAA) under catalysis of horseradish peroxidase to yield the fluorescent PHPAA dimer that is detected at excitation and emission wavelengths of 285 and 400 nm, respectively. The detection limit for hydrogen peroxide is 14 ng/mL, for organic peroxides between 34 ng/mL and 5 μg/mL. No interference by other compounds was observed when their concentrations were below 10 mg/mL except ethers and phenols. Received: 6 August 1997 / Revised: 11 December 1997 / Accepted: 15 December 1997  相似文献   

5.
Recently we found that ultraviolet B (UVB) irradiation in erythematous doses significantly inhibited the immediate type hypersensibility reaction in the skin. In the present study we investigated the effects of different wavelengths on the skin prick test reaction (SPT). The forearm of ragweed allergic patients was irradiated with increasing doses of ultraviolet A (UVA), visible light (VIS) or combined UVB, UVA and VIS light, referred to as mUV/VIS. SPTs were performed 24 h after irradiation both on irradiated and non-irradiated control skin areas using ragweed extract. UVA and VIS irradiation led to a slight, not significant inhibition of allergen-induced wheal formation. Mixed irradiation with mUV/VIS light resulted in a dose-dependent inhibition of the allergen-induced wheal formation. The inhibition was significant already at suberythematous doses. As there is a good correlation between SPT and the nasal symptoms in patients with hay fever these data suggest that phototherapy with mUV/VIS light might be an effective and safe treatment modality for immediate type hypersensibility reactions in the skin and nasal mucosa.  相似文献   

6.
Abstract— Sterols are important lipid components that may contribute to phototoxicity. We have found that phototoxic response in earthworms is related to sterols extractable with lipophilic solvents. The photochemically active compounds in worm lipids are 5,7,9(11),22-ergostatetraen-3bT-ol (9-DHE) and 5,7,9(11)-cholestatrien-3bT-ol (9-DDHC), respectively. Human skin lipids are known to contain 9-DHE. We have also found 9-DDHC in human skin, which is reported here for the first time. In the presence of an excess of the corresponding 5,7-dienes (ergosterol or 7-dehydrocholesterol), these photoactive sterols constitute a self-regenerating source of singlet molecular oxygen (1O2) during irradiation in vivo or in vitro with UVA bT15-400 nm). The quantum yield for photosensitization of 1O2 by 9-DHE was estimated to be 0.09. The 1O2 is scavenged by the dienes and the rate constant for 1O2 quenching by ergosterol was found to be 1.2 times 107 M -1 s-1 in methyl t-butyl ether (MTBE). This scavenging ultimately leads to the production of 5,8-endo-peroxide and hydrogen peroxide. Photochemically induced superoxide radical was also produced on irradiation of sterol 5,7,9-trienes and trapped with the spin trap 5,5-dimeth-yl-1-pyrroline W-oxide (DMPO). The production of singlet oxygen, peroxides and radicals by the sterols may be significant in the cell damaging and tumor promoting action of UVA light on skin.  相似文献   

7.
A method for the determination of hydrogen peroxide and several organic peroxides by high-performance liquid chromatography with post-column UV irradiation, derivatization and fluorescence detection is described. By means of post-column UV irradiation in the presence of water organic peroxides are converted into hydrogen peroxide and organic hydroperoxides, which react rapidly with the post-column derivatization agent p-hydroxyphenylacetic acid (PHPAA) under catalysis of horseradish peroxidase to yield the fluorescent PHPAA dimer that is detected at excitation and emission wavelengths of 285 and 400 nm, respectively. The detection limit for hydrogen peroxide is 14 ng/mL, for organic peroxides between 34 ng/mL and 5 μg/mL. No interference by other compounds was observed when their concentrations were below 10 mg/mL except ethers and phenols. Received: 6 August 1997 / Revised: 11 December 1997 / Accepted: 15 December 1997  相似文献   

8.
Abstract The proteins induced by heat and other stressors, called heat shock proteins (HSP) or stress proteins, are considered to play a general role in protection from cellular injury. Exposure to UVA (320400 nm) following application of 8-methoxypsoralen (8-MOP), termed PUVA is commonly used in the field of dermatology. In order to understand the induction of HSP in PUVA-treated human skin, indirect immunofluorescence using a monoclonal antibody specific for the 72 kDa HSP (HSP 72) was carried out in organ-cultured normal human skin that was treated with PUVA. When the organ-cultured skin was treated at 37°C for 1 h with 8-MOP at a final concentration of 10 or 100 μg/mL and exposed to UVA (51.3 kJ/m2), nuclear immunofluorcscence of HSP 72 was detected in the epidermal cells 12 h after UVA irradiation. In contrast, the induction of HSP 72 was not detected either by UVA irradiation or 8-MOP treatment. These results suggest that PUVA treatment is one of the stressors for human skin, and DNA damage caused by PUVA induces HSP 72.  相似文献   

9.
Ketoprofen (3-benzoyl-alpha-methylbenzeneacetic acid, KP) is a widely used nonsteroidal anti-inflammatory drug (NSAID) that causes both phototoxicity and photoallergy. Here, we investigated the formation of hemoglobin radicals, in both purified hemoglobin and red blood cells (RBC), induced by ultraviolet A (UVA)-KP by using "immuno-spin trapping," a novel approach that combines the specificity of spin trapping with the sensitivity of antigen-antibody interactions. The methemoglobin (metHb) radicals react covalently with 5,5-dimethyl-1-pyrroline N-oxide (DMPO) to form nitroxyl radical adducts that are oxidized to the corresponding nitrone adducts, which in turn are specifically recognized by antiserum against DMPO nitrone. We found that the formation of nitrone adducts in metHb depended on the UVA dose, the KP concentration and the presence of DMPO, as determined by enzyme-linked immunosorbent assay and Western blotting. Adduct formation decreased when irradiation was carried out in the presence of catalase or nitrogen, suggesting that H2O2 plays a key role in KP-UVA-induced metHb radical formation. KP in the dark did not generate metHb radical-derived nitrone adducts, whereas UVA alone resulted in the formation of metHb radical-derived nitrone adducts that increased with UVA dose from 4 to 10 J/cm2. However, KP (25 and 200 microM) plus UVA (4 and 10 J/cm2) resulted in a significant increase in the formation of metHb radical-derived nitrone adducts as compared with UVA or KP alone, indicating that KP photosensitized the production of the metHb radicals in the presence of UVA. In contrast, no metHb radical-derived nitrone adduct was detected in the absence of DMPO, even though KP and UVA were present. We also detected the hemoglobin radical formation in RBC as well as in hemolysates. The endogenous antioxidants and exogenous reduced glutathione inhibited the protein radical formation. These studies have shown that the immuno-spin-trapping technique can be used to detect radical damage in proteins as a result of photosensitizing reactions. The successful detection of protein radical formation caused by KP photosensitization could help further understand the photoallergic effect of this NSAID.  相似文献   

10.
Ketoprofen (KP), a non-steroidal anti-inflammatory drug of the 2-aryl propionic class, has been shown to produce photoallergic side effects as well as cutaneous photosensitizing properties that induce other phototoxic effects. In the present study we investigated photobinding of ketoprofen to both human serum albumin (HSA), a model protein, and to ex vivo pig skin and its photodegradation. Results demonstrate that photoadduct formation and photodegradation progressively increased with irradiation time where they reach a maximum. Maximum photobinding to the viable layer of the epidermis was about 7-8% of the initial radiolabelled KP added, in the region of 15-30 min UV irradiation. These results were comparable to in vitro results that were seen with photobinding of KP to HSA; in this case, the quantity of covalently bound material was approximately 10% of the initial, after a maximum of 18 min irradiation. It was found by HPLC analysis that the KP decrease is accompanied by an increase of the corresponding photoproduct, decarboxylated ketoprofen (DKP). The yield of DKP reaches a maximum at around 15 min. DKP appears to play an important role in vitro and ex vivo, being the major photoproduct and responsible for the photobinding process. Using micro-autoradiographical techniques we investigated the penetration and distribution of ketoprofen in ex vivo pig skin in greater detail. It was apparent that percutaneous absorption was taking place and that most of the ketoprofen was predominately localised in fibroblasts in the papillary dermis. No other specific localisation within the skin architecture was identified. Although there were differences in the quantities of bound ketoprofen within the different layers of the skin, these levels did not appear to correlate with irradiation time.  相似文献   

11.
The in vitro effects of 8-MOP (concentrations of 20, 100 and 500 ng/ml) alone or in combination with UVA on mediator release from human basophils and skin mast cells (HSMC), activated with immunological and non-immunological stimuli, were investigated. With respect to basophils activated with anti-IgE serum, the results of this study show that: (i) 8-MOP alone inhibits histamine, LTC(4), IL-4 and IL-13 release concentration dependently with a maximal effect at 500 ng/ml (a concentration not reached in vivo); and (ii) UVA irradiation (5 J/cm(2)), after 8-MOP incubation, enhances this inhibitory effect on all released mediators, but for IL-4 and IL-13 the percentage inhibition is also significant for the 8-MOP concentrations (20-100 ng/ml) employed in vivo during PUVA treatment. Moreover, histamine release from basophils activated with non-immunological stimuli (FMLP and A23187) is inhibited by 8-MOP, alone or in combination with UVA. With respect to the HSMC activated with anti-IgE serum, the results show that: (i) 8-MOP alone reduces histamine release concentration dependently; and (ii) this inhibitory effect is enhanced by UVA irradiation (5 J/cm(2)). Histamine release from HSMC activated with A23187 is not modified either by 8-MOP alone or by 8-MOP plus UVA.  相似文献   

12.
UVA radiation (315-400 nm), which constitutes ca 95% of the UV irradiation in natural sunlight reaching earth surface, is a major environmental risk factor associated with human skin cancer pathogenesis. UVA is an oxidizing agent that causes significant damage to cellular components through the release of reactive oxygen species (ROS) and leads to photoaging and photocarcinogenesis. Here we investigate the effect of silibinin, the flavonolignan from Silybum marianum, on UVA-induced ROS and cell death in human keratinocyte cell line HaCaT. In addition, the effect of silibinin on UVA-induced intracellular ROS-mediated endoplasmic reticulum (ER) stress was also analyzed. UVA irradiation resulted in ROS production and apoptosis in HaCaT cells in a dose-dependent manner, and the ROS levels and apoptotic index were found to be elevated significantly when the cells were treated with 75 μmsilibinin for 2 h before UVA exposure. When the cells were pretreated with 10 mmN-acetyl cysteine, the enhancement of UVA-induced apoptosis by silibinin was compromised. Furthermore, we found that silibinin enhances ER stress-mediated apoptosis in HaCaT cells by increasing the expression of CHOP protein. These results suggest that silibinin may be beneficial in the removal of UVA-damaged cells and the prevention of skin cancer.  相似文献   

13.
Vascular endothelial growth factor (VEGF) is a central regulator of neoangiogenesis in inflammatory and neoplastic conditions. Ultraviolet irradiation is one of the mainstays of dermatological therapy for various inflammatory skin diseases. In the present study we have compared the effects of UV irradiation on the production of VEGF by keratinocytes (KC) and by the KC-derived cell lines A431 and HaCaT. Irradiation of A431 and HaCaT cells with both UVA (10 J/cm2 and 20 J/cm2) and UVB (8 mJ/cm2 and 16 mJ/cm2) led to strong upregulation of VEGF mRNA and protein. Induction of VEGF by UVA and UVB in these cells was mediated by different pathways, i.e. the generation of free radicals and the secretion of (a) soluble factor(s), respectively. Unlike KC-derived cell lines, no increase in VEGF production was observed in KC in primary culture after irradiation with the same UV doses. Increasing the irradiation dose in these cells of UVA to 40 J/cm2 led to a marked decrease in soluble VEGF, whereas doses as high as 32 mJ/cm2 UVB only minimally affected VEGF levels. Reduction of VEGF production by KC might contribute to the effect of UVA irradiation in inflammatory skin diseases. The differential response of primary KC and autonomously growing KC-derived cell lines to the induction of VEGF by UV light could favor neoangiogenesis in the vicinity of epidermal tumor cells in vivo, thereby endowing them with a growth advantage over normal cells.  相似文献   

14.
Abstract— Since Hayflick's pioneering work in the early sixties, human diploid fibroblasts have become a widely accepted in vitro model system. Recently, Bayreuther and co-workers extended this experimental approach showing that fibroblasts in culture resemble, in their design, the hemopoietic stem-cell differentiation system. They found that the chemical agent mitomycin C accelerates the differentiation pathway from mitotic to postmitotic fibroblasts. We measured the response of endogenous glutathione levels after UVA irradiation (320-400 nm) in mitotic and mitomycin C-induced postmitotic human skin fibroblasts and foreskin-derived keratinocytes. The initial levels in mitotic foreskin derived human fibroblasts were 14.4 nmol glutathione per mg protein, whereas a 30% higher value was obtained in matching foreskin-derived keratinocytes. Similiar elevated levels of this important intracellular free radical scavenging system were found in fibroblasts of a donor suffering from xeroderma pigmentosum. Furthermore, three to four times higher levels of glutathione in mitomycin C-treated mitotic fibroblasts have been determined. In mitotic skin fibroblasts, UVA irradiation resulted in a depletion of glutathione up to 90% following a fluence of 1.0 MJ/m2UVA radiation. Higher initial glutathione levels were found in keratinocytes and mitomycin C-treated skin fibroblasts. In these fibroblasts a 70% depletion was detected and a much lower depletion (10-20%) was seen in some keratinocyte cell lines following fluences up to 1.0 MJ/m2. The depletion in skin fibroblasts was retained after 24 h following a fluence of 0.75 MJ/m2UVA light. In view of the fact that glutathione has been shown to be involved in a variety of metabolic processes and plays a role in cellular protection against UVA radiation, our results imply that the fibroblast differentiation system is a very useful tool to unravel the complex mechanism of UVA-induced oxidative stress.  相似文献   

15.
Piperine, the major alkaloid of black pepper (Piper nigrum L.; Piperaceae), stimulates melanocyte proliferation and dendrite formation in vitro. This property renders it a potential treatment for the skin depigmentation disorder vitiligo. However, piperine does not stimulate melanin synthesis in vitro, and treatments based on this compound may therefore be more effective with concomitant exposure of the skin to ultraviolet (UV) radiation or sunlight. The present study investigated the effect of UVA and simulated solar radiation (SSR) on the chemical stability of piperine, its melanocyte stimulatory effects and its ability to bind protein and DNA. Chromatographic and spectroscopic analysis confirmed the anticipated photoisomerization of irradiated piperine and showed the absence of any hydrolysis to piperinic acid. Isomerization resulted in the loss of ability to stimulate proliferation of a mouse melanocyte cell line, and to bind to human serum albumin. There was no evidence of DNA binding by piperine either before or after irradiation, showing the absence of photoadduct formation by either piperine or its geometric isomers. This is unlike the situation with psoralens, which form DNA adducts when administered with UVA in treating skin diseases. The present study suggests that exposure to bright sunlight should be avoided both during active application of piperine to the skin and in the storage of piperine products. If UVA radiation is used with piperine in the treatment of vitiligo, application of the compound and irradiation should be staggered to minimize photoisomerization. This approach is shown to effectively induce pigmentation in a sparsely pigmented mouse strain.  相似文献   

16.
Atopic dermatitis (AD ) is a widespread chronic skin condition that severely affects quality of life and can lead to more serious complications. Although ultraviolet (UV )A eye irradiation can exert various effects on the skin, it is unknown whether UVA can affect AD . To investigate potential associations, we used an NC /Nga mouse model of AD to study the effects of UVA eye irradiation. The eyes of mice were irradiated with a UVA dose of 100 kJ m−2 using a FL 20SBLB ‐A lamp. Our histological data demonstrated that AD symptoms could be ameliorated by UVA eye irradiation. We also observed an increase in the levels of adrenocorticotropic hormone (ACTH ), p53 and retinoid X receptor α (RXR α ) in mice with UVA ‐irradiated eyes. In contrast, the levels of thymic stromal lymphopoietin (TSLP ), period 2 (PER 2) and differentiated embryo chondrocytes 1 (DEC 1) protein were decreased in mice treated with UVA irradiation. Furthermore, UVA eye‐irradiated mice exhibited reduced DEC 1 and RXR α colocalization compared with nonirradiated mice. These results suggested that p53 and various clock gene proteins played important roles in the amelioration of AD symptoms observed after UVA eye irradiation; this technique may have therapeutic applications in AD .  相似文献   

17.
The modifications induced in hairless mouse skin by chronic UV irradiation were investigated. Skin explant cultures were used to study UVA- and UVB-induced changes occurring in interstitial collagen (type I and type III) and fibronectin biosynthesis. To study the long-term effects, albino hairless mice were irradiated with UVA radiation alone from two sources with different spectral qualities or with UVB. UVA and UVB radiation produced a significant increase in the ratio of type III to type I collagen (more than 100% for UVA-irradiated skin and about 60% for UVB-irradiated skin) accompanied by a significantly increased fibronectin biosynthesis (50% or more in all irradiated groups). Irradiation with either UVA or UVB alone had no significant effect on the total collagen synthesis and resulted in only a slight decrease in the total collagen content of the skin determined as hydroxyproline. This decrease was significant only in the case of the group irradiated with UVA (xenon) (decrease of 25%, expressed as micrograms of hydroxyproline per milligram wet weight). A significant decrease in collagen hydroxylation (expressed as radioactive hydroxyproline/radioactive hydroxyproline plus proline in neosynthesized collagen) was observed of about 50% in skin irradiated with UVA (xenon) but not in UVB-treated skin. Several of the above modifications (increased fibronectin biosynthesis, increased collagen type III to type I ratio) correspond to the modifications observed during the aging of non-irradiated hairless mice. Therefore it appears that UV irradiation accelerates the modifications of extracellular matrix biosynthesis observed during aging.  相似文献   

18.
The effect of chronological aging and photoaging (UV-radiation) on elastase-type enzyme activity of hairless mouse skin was studied. Aging resulted in the increase of elastase type endopeptidase activity extractable from mouse skins. Both chronic UVA and UVB radiation resulted in a significant increase of elastase type activity. PBS extracted only small part of the elastase activity, UV-A produced an increase of about 90-120% according to the type of irradiation (xenon or UV-A SUN) and UV-B produced a 72% increase. Extraction by Triton X-100 suggested that most of the activity is bound to cells and fibrous structures. EDTA inhibited 80-90% of the elastase activity in chronologically aged skin extracts and also the activity induced by UVA radiation suggesting that metallo-elastase(s) are involved. About 30% of the UVB induced activity could only be inhibited by EDTA and about 50% by PMSF suggesting that irradiation by UVB increased more serine endopeptidase activity but also MMP-activity. Chronic UVA radiation produced an increase of skin elastase activity equivalent to that observed after 24 months of aging in non-irradiated animals (approximately 100 weeks) corresponding to approximately 90% of total life span of these mice. The total increase produced by UVB was less, but the strong increase of a serine elastase, presumably from PMN-s, appear to produce a much more pronounced biological activity as shown by the presence of fibronectin degradation products in skin extracts. Such degradation products were shown to exert harmful effects on tissues. These results may well have biological significance and distinguish chronological aging and photoaging.  相似文献   

19.
Cultured melanocytes originating from persons with different skin phototypes were utilized for measurement of endonuclease sensitive sites induced by UVB and the determination of cell survival after UVA or UVB irradiation. During culture, the melanocytes largely maintained their phenotypic characteristics according to their original skin phototype. Total melanin concentrations were 4.9 times higher in the darker skin phototype (IV-VI) melanocytes when compared to the cells from lighter skin phototypes (I-III). Also phaeomelanin contents were higher (2.5 times) in the skin phototype (IV-VI) melanocytes which implies that the cells from light skin types contain less melanin, but a relatively high proportion of phaeomelanin. After UVB irradiation a stronger induction of endonuclease sensitive sites was found for melanocytes with a lower level of total melanin and a high content of pheomelanin. By measuring the clone forming ability in different melanocyte cultures after UVB irradiation, significant better survival was found in case of the cells with the higher melanin content. Despite the large variations in melanin content, no significant difference in survival after UVA irradiation could be demonstrated in this way. Our results suggest a protective effect of melanin for UVB and indicate the importance of the measurements of melanin content and composition when different parameters of UV-induced damage are studied in melanin producing cells.  相似文献   

20.
Anecdotal reports suggest that the dihydropyridine calcium antagonist, nifedipine (NIF), may be phototoxic in human skin. We have studied NIF phototoxicity in vitro using UVA fluorescent tubes (Sylvania PUVA). NIF was phototoxic to Candida albicans and induced photohaemolysis both with NIF present during irradiation and with pre-irradiated drug. In V79 hamster fibroblasts, NIF (10 micrograms ml-1) was phototoxic MTT assay) 24 h after irradiation (0-112 kJ m-2); at 7.5 kJ m-2, about 70% of cells were damaged whilst at 37.5 kJ m-2, only about 45% of cells were damaged. A similar pattern was seen with pre-irradiated NIF. Absorption spectroscopy showed that the NIF absorption maximum (Amax approximately 340 nm) blue-shifted to 314 nm at low UVA doses (7.5 kJ m-2 or less) and red-shifted to 345 nm at higher doses (isosbestic point, 325 nm). Thin layer chromatography of irradiated NIF showed a single photoproduct (PP1; Amax approximately 314 nm) formed at 7.5 kJ m-2 or less which disappeared at higher UVA doses to give further photoproducts. PP1 was highly dark toxic to V79 cells (50% damage at about 5 micrograms ml-1) but PP1 pre-irradiated with UVA was non-toxic. Preliminary gas chromatography-mass spectroscopy studies suggest that PP1 is the nitroso derivative of NIF. These results indicate that NIF phototoxicity in vitro is partially mediated by initial formation of a toxic photoproduct (PP1) but, paradoxically, subsequent UVA irradiation may reduce phototoxicity. The NIF concentrations required to induce in vitro phototoxicity are much greater than therapeutic plasma levels. Unless there is skin accumulation of NIF or PP1, our in vitro results suggest that NIF may not be an important skin-photosensitizing agent in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号