首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Triacetone triperoxide (TATP), one of the most dangerous primary explosives, has emerged as an explosive of choice for terrorists in recent years. Owing to the lack of UV absorbance, fluorescence, or facile ionization, TATP is extremely difficult to detect directly. Techniques that are able to detect generally require expensive instrumentation, need extensive sample preparation, or cannot detect TATP in the gas phase. Here we report a simple and highly sensitive colorimetric sensor for the detection of TATP vapor with semiquantitative analysis from 50 ppb to 10 ppm. By using a solid acid catalyst to pretreat a gas stream, we have discovered that a colorimetric sensor array of redox sensitive dyes can detect even very low levels of TATP vapor from its acid decomposition products (e.g., H(2)O(2)) with limits of detection (LOD) below 2 ppb (i.e., <0.02% of its saturation vapor pressure). Common potential interferences (e.g., humidity, personal hygiene products, perfume, laundry supplies, volatile organic compounds, etc.) do not generate an array response, and the array can also differentiate TATP from other chemical oxidants (e.g., hydrogen peroxide, bleach, tert-butylhydroperoxide, peracetic acid).  相似文献   

2.
合成了一种新型双金属杂核配合物Eu(TTA)3Zn(Salen).H2O(Salen=双水杨醛缩乙二胺,TTA=2-噻吩甲酰三氟丙酮),并对其进行了结构和荧光性能表征.配合物的晶体属于三斜晶系,Pī空间群.中心Eu(Ⅲ)离子与六个TTA分子的氧原子和Salen分子的两个酚氧原子配位,形成8配位的扭曲四方反棱柱构型.Zn(Ⅱ)离子与Salen分子中的两个酚氧原子和两个氮原子以及一个水分子配位,形成五配位的扭曲的四方锥构型.配合物Eu(TTA)3Zn(Salen).H2O的发光量子效率(18.0%)较配合物Eu(TTA)3.2H2O(12.5%)发光量子效率有明显提高,说明第二配体Zn(Salen).H2O对中心离子有较强的敏化发光作用.  相似文献   

3.
合成了四个新型的手性双核(R,R)Salen配合物[(Cu)2L•H2O(2), (Ni)2L(3), (Zn)2L•H2O(4), (MnCl)2L•2H2O(5)], (其中L是由(R,R)环己二胺、 3,5-叔丁基水杨醛、 5,5’-亚甲基二水杨醛为原料合成的手性二聚Salen配体(1)).用元素分析、NMR、FT-IR、UV-Vis、CD光谱对配体和配合物进行了表征.在与单核的Salen配体和配合物比较的基础上,详细讨论了红外光谱、电子吸收光谱、圆二色光谱性质.发现双核配体和配合物的电子吸收光谱吸收峰的位置和形状与单核的配体和配合物基本一致,而吸收峰的强度有近似两倍的关系.另外, 用激子偶合理论解释了此类手性化合物圆二色谱的Cotton效应和Cotton分裂. Cotton分裂的方向依赖于环己二胺的构象.(R,R)环己二胺决定了Salen化合物的手征性为负, Cotton分裂的正负两部分分别处于高能区和低能区.  相似文献   

4.
利用密度泛函理论(DFT), 在B3LYP/cc-pVDZ水平上, 对三过氧化三丙酮(Triacetone triperoxide, TATP)及其质子化离子[TATP+H]+进行了构型优化和质子亲和势(Proton Affinity, PA)计算, 研究结果表明, PA(TATP)=866.73 kJ/mol大于PA(H2O)=691.0 kJ/mol, TATP与H3O+可发生质子转移反应. 在自行研制的质子转移反应质谱(Proton transfer reaction mass spectrometry, PTR-MS) 装置上, 研究了TATP与H3O+反应生成的特征离子. 当漂移管中E/N=1.4×10-15 V·cm2时, 在荷质比m/z=91, 75, 74, 59, 43等处观察到了产物离子. 降低E/N至0.5×10-15 V·cm2后, 在m/z=223处观察到了质子化产物离子([TATP+H]+), 验证了计算结果; 结合[TATP+H]+的构型, 分析了TATP质子转移反应产物离子可能的归属及其形成过程. 结合PTR-MS漂移管内E/N的改变引起m/z=223, 91, 43等离子的变化特征, 可实现TATP的准确识别和快速定量检测, 检测下限达到5.0×10-10 mol/L(±50%).  相似文献   

5.
With the aim of improving security, a high‐throughput portal system for detecting triacetone triperoxide (TATP) vapor emitted from passengers and luggage was developed. The portal system consists of a push‐pull air sampler, an atmospheric‐pressure chemical ionization (APCI) ion source, and an explosives detector based on mass spectrometry. To improve the sensitivity of the explosives detector, a novel linear ion trap mass spectrometer with wire electrodes (wire‐LIT) is installed in the portal system. TATP signals were clearly obtained 2 s after the subject under detection passed through the portal system. Preliminary results on sensitivity and throughput show that the portal system is a useful tool for preventing the use of TATP‐based improvised explosive devices by screening persons in places where many people are coming and going. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Schulte-Ladbeck R  Kolla P  Karst U 《The Analyst》2002,127(9):1152-1154
A rapid and simple field test for the detection of triacetone-triperoxide (TATP) and hexamethylenetriperoxidediamine (HMTD), two explosives which find significant illegal use, has been developed. Unknown samples are first treated with a catalase solution to remove hydrogen peroxide traces, in order to provide selectivity towards peroxide-based bleaching agents which are contained in commercial laundry detergents. Subsequently, the peroxide-based explosives are decomposed via UV irradiation, thus yielding hydrogen peroxide, which is determined by the horseradish peroxidase (POD) catalysed formation of the green radical cation of 2,2'-azino-bis(3-ethylbenzothiazoline)-6-sulfonate (ABTS). The limits of detection for this method are 8 x 10(-6) mol dm(-3) for TATP and 8 x 10(-7) mol dm(-3) for HMTD, respectively. As an option, p-hydroxyphenylacetic acid (pHPAA) may be used as peroxidase substrate, resulting in lower limits of detection (8 x 10(-7) mol dm(-3) for TATP and HMTD). The complete method uses a mobile setup to be applied under field conditions.  相似文献   

7.
Lu D  Cagan A  Munoz RA  Tangkuaram T  Wang J 《The Analyst》2006,131(12):1279-1281
A highly sensitive electrochemical assay of the peroxide-based explosives triacetone triperoxide (TATP) and hexamethylene triperoxide diamine (HMTD) at a Prussian-blue (PB) modified electrode is reported. The method involves photochemical degradation of the peroxide explosives and a low potential (0.0 V) electrocatalytic amperometric sensing of the generated hydrogen peroxide at the PB transducer and offers nanomolar detection limits following a short (15 s) irradiation times. The electrochemical sensing protocol should facilitate rapid field screening of peroxide explosives.  相似文献   

8.
合成了新的三元配合物[Cu(L-tyr)(TATP)(H2O)]ClO4.H2O(L-tyr=L-酪氨酸,TATP=1,4,8,9-四氮三联苯),并用红外光谱和电子顺磁共振谱进行了表征,用X射线单晶衍射测定了配合物结构,晶体属单斜晶系,空间群P21,晶胞参数:a=0.7862(2)nm,b=1.0510(5)nm,c=1.4768(3)nm,β=97.74(3)°,Z=2,V=1.2092(5)nm^3,R1=0.0341,wR2=0.0919。中心Cu(Ⅱ)离子具有变形四方锥配位结构,与TATP中两个氮原子、L-tyr的氨基氮和羧基氧原子及一个水分子配位。晶体中芳环堆积及氢键作用类似于稳定DNA双螺旋结构的碱基之间的作用,具有分子识别的特点。  相似文献   

9.
The explosive triacetone triperoxide (TATP) has been analyzed by electrospray ionization mass spectrometry (ESI-MS) on a linear quadrupole instrument, giving a 62.5 ng limit of detection in full scan positive ion mode. In the ESI interface with no applied fragmentor voltage the m/z 245 [TATP + Na](+) ion was observed along with m/z 215 [TATP + Na - C(2)H(6)](+) and 81 [(CH(3))(2)CO + Na](+). When TATP was ionized by ESI with an applied fragmentor voltage of 75 V, ions at m/z 141 [C(4)H(6)O(4) + Na](+) and 172 [C(5)H(9)O(5) + Na](+) were also observed. When the precipitates formed in the synthesis of TATP were analyzed before the reaction was complete, a new series of ions was observed in which the ions were separated by 74 m/z units, with ions occurring at m/z 205, 279, 353, 427, 501, 575, 649 and 723. The series of evenly spaced ions is accounted for as oligomeric acetone carbonyl oxides terminated as hydroperoxides, [HOOC(CH(3))(2){OOC(CH(3))(2)}(n)OOH + Na](+) (n = 1, 2 ... 8). The ESI-MS spectra for this homologous series of oligoperoxides have previously been observed from the ozonolysis of tetramethylethylene at low temperatures. Precipitates from the incomplete reaction mixture, under an applied fragmentor voltage of 100 V in ESI, produced an additional ion observed at m/z 99 [C(2)H(4)O(3) + Na](+), and a set of ions separated by 74 m/z units occurring at m/z 173, 247, 321, 395, 469 and 543, proposed to correspond to [CH(3)CO{OOC(CH(3))(2)}(n)OOH + Na](+) (n = 1,2 ... 5). Support for the assigned structures was obtained through the analysis of both protiated and perdeuterated TATP samples.  相似文献   

10.
Recent methods for the determination of peroxide-based explosives   总被引:1,自引:0,他引:1  
In the last few years, the need to determine peroxide-based explosives in solid samples and air samples has resulted in the development of a series of new analytical methods for triacetonetriperoxide (TATP, acetone peroxide) and hexamethylenetriperoxidediamine (HMTD). In this review, after a short introduction describing the state of the art in the field, these new analytical methods are critically discussed. Particular emphasis is placed on spectroscopic and mass spectrometric methods as well as on chromatographic techniques with selective detection schemes. The potential of these methods to analyse unknown solid samples that might contain one or more of the explosives and to analyse peroxide-based explosives in air is evaluated.  相似文献   

11.
The water adducts of triacetone triperoxide (TATP) have been observed by using broadband rotational spectroscopy. This work opens a new way for the gas-phase detection of this improvised explosive. The observed clusters exhibit unusual water dynamics and rarely observed multicenter interactions. TATP-H2O is formed from the D3 symmetry conformer of TATP with water lying close to the C3 axis. Water rotation around this axis with a very low barrier gives rise to the rotational spectrum of a symmetric top. The main interaction of the monohydrate is a four-center trifurcated donor Ow-H⋅⋅⋅O hydrogen bond, not observed previously in the gas phase, reinforced by a weak four-center trifurcated acceptor C−H⋅⋅⋅Ow interaction. Surprisingly, all structural signatures show the weakness of these interactions. The complex TATP-(H2O)2 is formed from the monohydrated TATP by the self-association of water.  相似文献   

12.
TATP-铜(II)-L-丝氨酸(L-精氨酸)配合物与DNA的相互作用   总被引:1,自引:0,他引:1  
采用电子吸收光谱、荧光光谱、粘度测定和琼脂糖凝胶电泳方法研究了配合物[Cu(TATP)(L-Ser)(H2O)]·ClO4(1)和[Cu(TATP)(L-Arg)(H2O)]2ClO4·0.5H2O(2)(TATP=1,4,8,9-四氮三联苯, L-Ser=L-丝氨酸, L-Arg=L-精氨酸)与DNA之间的相互作用. 结果表明, 配合物电子吸收光谱的最大吸收峰在加入DNA后产生明显的减色效应, 配合物能极大地淬灭溴化乙啶(EB)-DNA体系的荧光, DNA的粘度随配合物浓度的增加而增大, 表明配合物对DNA有较强的插入作用, 作用力大小为配合物2>1; 另外, 凝胶电泳实验结果表明配合物在维生素C存在的条件下对pBR322 DNA具有显著的断裂作用.  相似文献   

13.
To study the initial chemical events related to the detonation of triacetonetriperoxide (TATP), we have performed a series of molecular dynamics (MD) simulations. In these simulations we used the ReaxFF reactive force field, which we have extended to reproduce the quantum mechanics (QM)-derived relative energies of the reactants, products, intermediates, and transition states related to the TATP unimolecular decomposition. We find excellent agreement between the QM-predicted reaction products and those observed from 100 independent ReaxFF unimolecular MD cookoff simulations. Furthermore, the primary reaction products and average initiation temperature observed in these 100 independent unimolecular cookoff simulations match closely with those observed from a TATP condensed-phase cookoff simulation, indicating that unimolecular decomposition dominates the thermal initiation of the TATP condensed phase. Our simulations demonstrate that thermal initiation of condensed-phase TATP is entropy-driven (rather than enthalpy-driven), since the initial reaction (which mainly leads to the formation of acetone, O(2), and several unstable C(3)H(6)O(2) isomers) is almost energy-neutral. The O(2) generated in the initiation steps is subsequently utilized in exothermic secondary reactions, leading finally to formation of water and a wide range of small hydrocarbons, acids, aldehydes, ketones, ethers, and alcohols.  相似文献   

14.
Herein are described the synthesis and characterization of the complexes of formula LAlR (where R = Cl and L = Salen (1), SalenCl (2), Acen (3) and where R = Me and L = Salen (4), SalenCl (5), Acen (6); Salen = N,N'-ethylenebis((2-hydroxyphenyl)methylimine), SalenCl = N,N'-ethylenebis((2-hydroxy-5-chlorophenyl)methylimine), Acen = N,N'-ethylenebis((2-hydroxyphenyl)-1-ethylimine)). The LAlCl derivatives dissolve in water and MeOH to yield the cationic complexes [LAl(H(2)O)(2)](+)Cl(-) (L = Salen (7), SalenCl (8), Acen (9)) and [LAl(MeOH)(2)](+)Cl(-) (L = Salen (10), SalenCl (11), Acen (12)), respectively. An alternative preparation of the cationic species involves the reaction of the LAlCl derivative with NaBPh(4). This leads to complexes of formula [LAl(MeOH)(2)](+)BPh(4)(-) (L = Salen (13), SalenCl (14), Acen (15)). Complexes 4-6 can be reacted with either MeOH or 4-chloro-3,5-dimethylphenol (Ph') to form complexes of general formula LAlOR (R = Me, L = Salen (16), SalenCl (17), Acen (18); R = Ph', L = Salen (19), SalenCl (20), Acen (21)). All of the compounds were characterized by IR, melting points, elemental analyses, and, when soluble, NMR. Additionally, the crystal structures of 7, 13, 15, and 18 were obtained.  相似文献   

15.
Munoz RA  Lu D  Cagan A  Wang J 《The Analyst》2007,132(6):560-565
A fast, simple and sensitive electrochemical method for sensing peroxide-based explosives based on their acid treatment is reported. The method relies on the high electrocatalytic activity of Prussian-blue (PB)-modified electrodes towards the acid-generated hydrogen peroxide in the harsh acidic medium (down to pH 0.3) used for releasing hydrogen peroxide. Such effective operation of PB electrochemical sensors in strongly acidic media eliminates the need for an additional neutralization step required in analogous peroxidase-based assays (due to acid-induced enzyme deactivation processes). Factors affecting the efficiency of the acid pre-treatment of triacetone triperoxide (TATP) have been examined and optimized to allow its sensitive measurement down to the 50 ng level within 60 s. Chronoamperometric detection of microgram amounts of solid TATP, following a one-minute acid mixing and placing a 20 microL droplet onto a disposable PB-modified screen-printed electrode is illustrated. Similar results were obtained for the peroxide explosive hexamethylene triperoxide diamine (HMTD). By greatly simplifying the analytical procedure, such an acid-operated "artificial peroxidase" electrocatalytic transducer holds great promise for designing "one-step", user-friendly, miniaturized, cost-effective devices for field screening of peroxide explosives.  相似文献   

16.
Three novel phosphorus‐containing Salen‐based derivatives (Salen‐DPCP‐M: M = Ni, Zn, and Mn), which include both phenyl phosphate structures (DPCP) and Salen‐metal complexes, were prepared for enhancing the fire safety of thermoplastic polyurethane (TPU). Thermogravimetric analysis (TGA) showed that Salen‐DPCP‐M altered the thermal degradation pathways of TPU probably due to the phosphorus‐containing structure of Salen‐DPCP‐M. The cone calorimeter test showed that the addition of 3 wt% of Salen‐DPCP‐Ni, Salen‐DPCP‐Zn, and Salen‐DPCP‐Mn lowered the peak of heat release rate (PHRR) from 1495 kW/m2 for neat TPU to 690, 875, and 813 kW/m2, respectively, for the TPU composites, which demonstrated that Salen‐DPCP‐M improved the fire safety of TPU. In addition, the release of toxic CO gas from the Salen‐DPCP‐Ni/TPU and Salen‐DPCP‐Zn/TPU composites was reduced by 78.2% and 80.0%, respectively. The results of TGA/infrared spectrometry (TG‐FTIR) showed that the incorporation of Salen‐DPCP‐Ni promoted the release CO2, while reducing the formation of harmful gases. Laser Raman spectroscopy (LRS) and scanning electron microscopy (SEM) showed that Salen‐DPCP‐Ni/TPU and Salen‐DPCP‐Zn/TPU composites formed a dense and stable char layer. Herein, the mechanism of these flame retardants containing novel phosphorus‐containing Salen‐metal complexes is also proposed.  相似文献   

17.
The explosive triacetone triperoxide (TATP) has been analyzed by gas chromatography/mass spectrometry (GC/MS) and sub-nanogram detection limits are reported by ammonia positive ion chemical ionization (PICI), electron ionization (EI) and methane negative ion chemical ionization (NICI). Analysis by methane PICI and ammonia NICI gave detection limits in the low nanogram range. Analyses were carried out on (linear) quadrupole and ion trap instruments. Analysis of TATP by PICI using ammonia reagent gas is the preferred analytical method, producing low limits of detection as well as an abundant (greater than 60% of base peak) diagnostic adduct ion at m/z 240 corresponding to [TATP + NH4]+. Isolation of the [TATP + NH4]+ ion with subsequent collision-induced dissociation (CID) produces extremely low abundance product ions at m/z values greater than 60, and the m/z 223 ion corresponding to [TATP + H]+ was not observed. Density functional theory (DFT) calculations at the B88LYP/DVZP level indicate that dissociation of the complex to form NH4+ and TATP occurs at energies lower than peroxide bond dissociation, while protonation of TATP leads to cleavage of the ring structure. These results provide a method for pico-gram detection levels of TATP using commercial instrumentation commonly available in forensic laboratories. As a point of comparison, a detection limit of 15 ng was obtained by flame ionization detection.  相似文献   

18.
The safe decomposition of solid TATP (triacetone triperoxide) explosive is examined theoretically. The route to destruction starts with formation of metal complexes between a metal ion and the TATP molecule. The second step is decomposition of the molecules into stable final products. We examined the structure and stability of both metal ion (including Na(+), Cu(+), Cu(2+), Co(2+), and Zn(2+)) and proton complexes with TATP using quantum chemical calculations at the DFT-PBE0 level of theory. In addition, for each ion complex, we determined the initial steps in the pathway to decomposition together with the associated transition states. We find that the products of decomposition, in particular, acetone, are also stabilized by ion metal complexes. In agreement with experiment, we find the best candidates for metal ion induced decomposition are Cu(2+) and Zn(2+).  相似文献   

19.
The O2 affinity of Co(II)Salen complexes 1-4 and their reactivity in cyclohexene oxygenation reactions of Co(II)Salen complexes 1-4 are modulated by noncovalent interactions such as hydrogen bonding and steric hindrance using a functionalized diamino bridge. Higher O2 affinity is observed in the case of efficient hydrogen-bonding interactions (complex 1), while increased steric hindrance (cis vs trans diamino bridge) around the Co-coordinated O2 is influencing the reactivity of the complexes.  相似文献   

20.
A dinuclear copper(Ⅱ) complex [Cu2(TATP)2(L-Leu)2(ClO4)2]2.2H2O was synthesized and characterized,where,TATP=1,4,8,9-tetraazatriphenylene,and L-Leu=L-leucinate,The complex was crystallized in the triclinic space group P1,with two independent molecules in a unit cell,Two Cu(Ⅱ) ions in each complex[Cu2(TATP)2(L-Leu)2(ClO4)2]molecule were found to be in different coordination geometries,i.e.,Cu2 or Cu4 of a distorted square-pyramidal geometry coordinated with two nitrogens of TATP,the amino nitrogen and one carboxylate oxygen of L-Leu and one oxygen of perchlorate,and Cul or Cu3 with an octahedral geometry coordinated with the above stated similar coordinated atoms,and another carboxylate oxygen of L-Leu coordinating to Cu2 or Cu4,The complex can interact with CT-DNA by an intercalative mode and cleave pBR322 DNA in the presence of ascorbate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号