首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Environmental Fenton chemistry has been poorly constrained within the marine environment at a multi-component level. A simple, unique, reconfiguration of a flow-injection analytical system combined with luminol chemiluminescence allows quasi-simultaneously the measurement, using a single load-inject valve and a single photon multiplier tube, of reduced iron, Fe(II), and hydrogen peroxide. The system enables rapid, every 22 s, measurements with good accuracy at environmentally relevant concentrations, less than 5% relative standard deviations on both a 5 nM Fe(II) standard and a 60 nM hydrogen peroxide standard. Limits of detection were as low as 40 pM Fe(II) and 100 pM hydrogen peroxide. The system showed excellent capability by measuring from within an organic rich seawater the photochemically induced production of Fe(II) and hydrogen peroxide and their subsequent cycling and Fenton like interactions.  相似文献   

2.

A comparative study of the photoreducing potentials of spinach thylakoid membranes and spinach photosystem II particles has been made. Hexachloroplatinate ions have been used as electron acceptors in a Hill-like assay for oxygen evolution measurements with both thylakoid membranes and photosystem II particles. However, unlike other Hill acceptors, such as ferricyanide, hexachloroplatinate can be fully reduced to metallic platinum that is catalytically active for hydrogen evolution. This is experimentally confirmed in the ability of chloroplast membranes to photoprecipitate platinum and photoproduce molecular hydrogen. Although similar experiments with photosystem II particles resulted in hexachloroplatinate-supported oxygen evolution, hydrogen evolution was not observed. Moreover, photosystem II particles coupled to ferredoxin and hydrogenase resulted in neither hydrogen nor oxygen evolution—a distinct contrast to the results obtained with chloroplast membranes.

  相似文献   

3.
Chemiluminescence (CL) from the cobalt(II)‐catalyzed oxidation of luminol with hydrogen peroxide was dramatically enhanced by the presence of carbonate. The CL signal increases by several orders of magnitude over a wide range of concentrations of Co(II), luminol, or hydrogen peroxide. A limit of detection of 10?12 M for Co(II) and luminol and 10?8 M for hydrogen peroxide can be achieved. The CL emission spectrum exhibits a maximum at 425 nm, indicating that the excited 3‐aminophthalate is the emitting species. ESR spin‐trapping experiments revealed a large increase in the production of hydroxyl and carbonate radicals by the presence of carbonate, which is responsible for the enormous CL enhancement. Uric acid, ascorbic acid, acetaminophen, and p‐hydroxyphenyl acetic acid are capable of scavenging the radicals, thereby inhibiting the CL emission. The inhibition of CL intensity can be used to determine these substances at the sub‐micromolar level.  相似文献   

4.
Ohura H  Imato T  Yamasaki S  Ishibashi N 《Talanta》1996,43(6):943-950
A rapid and highly sensitive potentiometric flow-injection method for the determination of trace hydrogen peroxide was developed by use of an Fe(III)-Fe(II) potential buffer solution containing bromide and Mo(VI). The analytical method was based on a linear relationship between a concentration of hydrogen peroxide and a largely transient potential change of an oxidation-reduction potential electrode due to bromine generated by the reaction of hydrogen peroxide with the potential buffer solution. The oxidation of bromide to bromine by hydrogen peroxide occurred very rapidly with the assistance of Mo(VI) when Fe(II) existed in the potential buffer solution. It was estimated by batchwise experiments that hydroxyl radical, OH., was generated by the reaction of hydrogen peroxide with Fe(II) as an intermediate, and subsequently oxidized bromide to bromine. In a flow system, analytical sensitivities to hydrogen peroxide obtained by the detection of the transient change of potential were enhanced about 75 fold compared with those obtained by using the potential change caused by the reaction of hydrogen peroxide with the potential buffer solution without bromide and Mo(VI). Sensitivities increased with decreasing concentration of the Fe(III)-Fe(II) buffer in the reagent solution. The detection limit (S/N = 3) of 4 x 10(-7) M (13.6 ppb) was achieved by using the 1 x 10(-4) M Fe(III)-Fe(II) buffer containing 0.4 M NaBr, 1.0 M H(2)SO(4) and 0.5% (NH(4))(6)Mo(7)O(24). Analytical throughput was approximately 40 h(-1) and the RSD (n = 6) was 0.6% for measurement of 4 x 10(-6) M hydrogen peroxide. The proposed method was applied to the determination of hydrogen peroxide in real rainwater samples, and was found to provide a good recovery for H(2)O(2) added to rainwater samples.  相似文献   

5.
Abstract— Hydrogen was photoproduced from water in a system containing isolated chloroplasts, hy-drogenase, a coupling electron carrier (ferredoxin or methyl viologen), and an oxygen scavenger. The rate and extent of hydrogen production anaerobically was much less than the rate of aerobic electron-carrier reduction by chloroplasts and was not limited by hydrogenase. The limiting reaction in the coupled system was the extent of reduction of methyl viologen anaerobically rather than its oxidation by oxygen produced during the course of the reaction. Inhibition of photosystem II by 3-(3,4dichlorophenyl)-1,1-dimethylurea and addition of a photosystem 1 electron donor did not lead to photoproduction of hydrogen or photoreduction of methyl viologen. Extensive photosystem I hydrogen evolution was obtained when thiols were also present. Platinum asbestos or palladium asbestos replaced hydrogenase in a system coupled to chloroplasts.  相似文献   

6.
Yellow zinc ferricyanide is reduced by heating to white zinc ferrocyanide by hydrogen peroxide in the presence of zinc sulphate and sodium, acetate. Copper ferricyanide, however, is reduced to brown copper ferrocyanide at room temperature, by means of hydrogen peroxide in the presence of copper sulphate and sodium acetate. The latter reaction can be applied for the detection of extremely small quantities of hydrogen peroxide both in a test tube (2.5 γ in 1 ml) and as a spot test (0.5 to 1 γ).  相似文献   

7.
The reaction of XeO(3) with thirteen reducing agents was studied qualitatively. From these, Fe(II) and Ti(III) were chosen for direct titration with XeO(3) with pressurometric end-point detection. The precision was a few parts per thousand. Evidence was found for the production of oxygen during both titrations, and of hydrogen peroxide formation during the Ti(III) reaction. The Ti(III)/Xe reacting ratio was independent of the amount of Ti(III) from 35.5 to 87.7 micromole and was 5.93 +/- 0.03 instead of the expected 6.00. The ratio for the Fe(II) reaction varied from 5.85 to 5.95 over the Fe(II) range from 10.05 to 78.7 micromole. The stoichiometric ratio for the iodometric standardization of XeO(3) solutions was confirmed as 6.00.  相似文献   

8.
Two complementary methods were optimized for the separation and detection of trace levels of hydrogen peroxide. The first method utilized reversed-phase high-performance liquid chromatography with fluorescence detection (HPLC-FD). With this approach, hydrogen peroxide was detected based upon its participation in the hemin-catalyzed oxidation of p-hydroxyphenylacetic acid to yield the fluorescent dimer. The second method utilized high performance liquid chromatography with electrochemical detection (HPLC-ED). With this approach, hydrogen peroxide was detected based upon its oxidation at a gold working electrode at an applied potential of 400 mV vs. hydrogen reference electrode (Pd/H(2)). Both methods were linear across the range of 15-300 μM, and the electrochemical method was linear across a wider range of 7.4-15,000 μM. The limit of detection for hydrogen peroxide was 6 μM by HPLC/FD, and 0.6 μM by HPLC/ED. A series of organic peroxides and inorganic ions were evaluated for their potential to interfere with the detection of hydrogen peroxide. Studies investigating the recovery of hydrogen peroxide with three different extraction protocols were also performed. Post-blast debris from the detonation of a mixture of concentrated hydrogen peroxide with nitromethane was analyzed on both systems. Hydrogen peroxide residues were successfully detected on this post-blast debris.  相似文献   

9.
利用Western blotting技术对未磷酸化和磷酸化光合系统Ⅱ(PSⅡ)膜中D1蛋白的7900和9300降解片段进行了检测. 结果表明, 超氧阴离子、 过氧化氢和羟基自由基参与了未磷酸化和磷酸化D1蛋白的7900和9300片段的产生. 磷酸化能够部分抑制D1蛋白7900和9300片段的产生, 从而对D1蛋白起到保护作用.  相似文献   

10.
In this report, the effect of platinization on the photosynthetic activity of the chloroplast membranes is studied. Oxygen evolution, fluorescence emission and thermal de-activation processes are modified after platinization. It is shown that photosystem II activity is affected by the hydrogen purging involved in the platinization procedure as seen by the reduced rates of oxygen evolution and a decrease in variable fluorescence. Depletion of bicarbonate from photosystem II during purging is suggested to be responsible partly for the decreased electron transfer rates and for a lower half-saturation light intensity required for energy storage as measured by photoacoustic spectroscopy. On the other hand, the electron sink created by the reduction of hydrogen at the acceptor side of photosystem I is shown to reoxidize efficiently the plas-toquinone pool of photosystem II.  相似文献   

11.
《Analytical letters》2012,45(17):2762-2772
Silica based nanostructured composite materials doped with luminol and cobalt(II) ion were synthesized and characterized, resulting in a highly chemiluminescent material in the presence of hydrogen peroxide. A detection system with the CL light guided from the reaction tube to the photomultiplier tube using a one millimeter glass optical fiber was developed and assessed. A linear response was observed using a semi-logarithm calibration between 50–2000 μM hydrogen peroxide with 1 μM as the limit of detection.  相似文献   

12.
Miller RJ  Ingle JD 《Talanta》1982,29(4):303-311
The chemiluminescence reaction involving pyrogallol in alkaline hydrogen peroxide solution is described. With reaction conditions selected for the determination of Co(II), the detection limit for Co(II) was at least two orders of magnitude below the detection limit of all other species tested. The results suggest that Ca, Mg, Mn, and Fe are the most likely interferents for environmental and biological samples. The log-log calibration graph for Co(II) is linear from a detection limit of 0.5 ng/ml up to 10 microg/ml.  相似文献   

13.
The poly(m‐toluidine) film was prepared by using the repeated potential cycling technique in an acidic solution at the surface of carbon paste electrode. Then transition metal ions of Ni(II) were incorporated to the polymer by immersion of the modified electrode in a 0.2 M NiSO4, also the electrochemical characterization of this modified electrode exhibits stable redox behavior of the Ni(III)/Ni(II) couple. The electrocatalytic ability of Ni(II)/poly(m‐toluidine)/modified carbon paste electrode (Ni/PMT/MCPE) was demonstrated by electrocatalytic oxidation of hydrogen peroxide with cyclic voltammetry and chronoamperometry methods in the alkaline solution. The effects of scan rate and hydrogen peroxide concentration on the anodic peak height of hydrogen peroxide oxidation were also investigated. The catalytic oxidation peak current showed two linear ranges with different slopes dependent on the hydrogen peroxide concentration and the lower detection limit was 6.5 μM (S/N=3). The catalytic reaction rate constant, (kh), was calculated 5.5×102 M?1 s?1 by the data of chronoamperometry. This modified electrode has many advantages such as simple preparation procedure, good reproducibility and high catalytic activity toward the hydrogen peroxide oxidation. This method was also applied as a simple method for routine control and can be employed directly without any pretreatment or separation for analysis cosmetics products.  相似文献   

14.
A flow injection-photometric method has been developed for the determination of iron(II+III). The method is based on the catalytic effect of iron(III) on the hydrogen peroxide oxidation of 3,3',5,5'-tetramethylbenzidine to form a blue compound (lambda(max)=650 nm). In this catalyzed reaction, 1,10-phenanthroline acted as an effective activator. Iron(II) is also determined, being oxidized by hydrogen peroxide. Calibration graphs for iron(II) and iron(III) obtained under the optimized conditions were identical with each other and linear in the range 0.2-200 ng ml(-1) with a detection limit of 0.05 ng ml(-1) iron. The reproducibility was satisfactory with a relative S.D. of 1.0% for ten determinations of 5 ng ml(-1) iron(III). The proposed method was successfully applied to the determination of iron in river and lake water samples and can be determined free iron species.  相似文献   

15.
Murty NK  Satyanarayana V  Rao YF 《Talanta》1977,24(12):757-759
A direct reductimetric method for the determination of peroxydisulphate, hydrogen peroxide, sodium perborate, nitrate and nitrite in fairly concentrated phosphoric acid medium with iron(II) has been developed, with both potentiometric and visual end-point detection. Cacotheline, Methylene Blue, thionine, Azure A, Azure B, Azure C, Toluidine Blue, new Methylene Blue, ferroin, N-phenylanthranilic acid, p-ethoxychrysoidine and barium diphenylaminesulphonate are used as indicators. The method is useful in the analysis of binary mixtures of peroxydisulphate and peroxide or perborate and in the estimation of the nitrate content of fertilizers.  相似文献   

16.
过氧化氢既可用作环境友好的绿色氧化剂,也可用作燃料电池中的太阳能燃料,因而受到越来越多的关注.本文综述了太阳能驱动分子氧氧化水制备过氧化氢及其作为绿色氧化剂和燃料的研究进展.利用太阳能将水的2e-和4e-氧化与分子氧的2e-还原相结合,使光催化生产过氧化氢成为可能;本文讨论了与2e-和4e-水氧化选择性及2e-和4e-...  相似文献   

17.
用十聚钨酸季铵盐催化过氧化氢氧化环己烯为己二酸   总被引:9,自引:0,他引:9  
郭明林 《分子催化》2003,17(5):385-388
己二酸是重要的化学品.开发绿色、洁净的氧化方法合成己二酸,一直吸引着许多化学工作者的注意.1998年,Noyori等[1]报道了使用钨酸钠和甲基三辛基硫酸氢铵作为催化剂把环己烯氧化为己二酸的方法.1999年邓友全等[2,3]报道了在钨酸钠和草酸等形成原位过氧钨酸有机配合物催化剂存在下,使用30%过氧化氢由环己烯合成己二酸的方法.姜恒等[4,5]先后在甲基三辛基硫酸氢铵替代物的选择上和过氧钨酸有机配合物有机配体的作用方面进行了较为系统的工作.这些研究工作虽然都能直接获得高质量和高产率的己二酸,但是都存在着催化剂难于分离的问题.重复…  相似文献   

18.
《Analytical letters》2012,45(7):871-889
Abstract

A flow injection manifold containing a dialyzer and reactors with immobilized galactose oxidase and peroxidase was used for the determination of galactose in urine, lactose in milk and dihydroxyacetone in a biotechnological reaction medium. The hydrogen peroxide which is formed by the galactose oxidase reaction was detected by amperometric reduction of a mediator. The latter had been produced from hydrogen peroxide in a peroxidase catalyzed reaction. The hydrogen peroxide detection step was studied with several mediators and hexacyanoferrate (II) was selected. An ion exchange HPLC procedure was used to purify the galactose oxidase, in particular from catalase, and the kinetics and the selectivity of a reactor containing the immobilized enzyme was investigated. Columns for removal of certain interferents such as ascorbic acid were used in the determination of galactose in urine. The response to galactose standards was linear from the detection limit of 2 μM to 60 mM. The throughput was 45 samples per hour and the relative standard deviation 0.4%.  相似文献   

19.
The future of energy supply depends on innovative breakthroughs regarding the design of cheap, sustainable, and efficient systems for the conversion and storage of renewable energy sources, such as solar energy. The production of hydrogen, a fuel with remarkable properties, through sunlight-driven water splitting appears to be a promising and appealing solution. While the active sites of enzymes involved in the overall water-splitting process in natural systems, namely hydrogenases and photosystem II, use iron, nickel, and manganese ions, cobalt has emerged in the past five years as the most versatile non-noble metal for the development of synthetic H(2)- and O(2)-evolving catalysts. Such catalysts can be further coupled with photosensitizers to generate photocatalytic systems for light-induced hydrogen evolution from water.  相似文献   

20.
Decomposition of hydrogen peroxide was examined was examined by using Cu(II)–poly(vinyl alcohol) (PVA) as catalyst. The rates of decomposition were measured. Electronic spectra and infrared spectra of Cu(II)–PVA complex systems were determined at various stages of decomposition. Effect of addition of various amines to the Cu(II)–PVA system on catalytic action was considered. The relation between the initial rate and the initial concentration of hydrogen peroxide varied in accordance with the rate expression of Michaelis-Menten type. Cu(II)–PVA complex was found to have a large catalytic activity, while the polymeric PVA ligand and copper(II) ion exhibited less activity than Cu(II)–PVA complex. For hydrogen peroxide decomposition, Cu(II)–PVA complex showed catalytic activity when a stable complex of planar structure formed, while many other polymer complexes reported by other authors showed the catalytic activity when they were in unstable complex forms. An amine substituent has a critical influence on the rate of hydrogen peroxide decomposition. The mechanism in the first step of reaction for hydrogen peroxide decomposition is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号