首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water-soluble proteins encapsulated within reverse micelles may be studied under a variety of conditions, including low temperature and a wide range of buffer conditions. Direct high-resolution detection of information relating to protein folding intermediates and pathways can be monitored by low-temperature solution NMR. Ubiquitin encapsulated within AOT reverse micelles was studied using multidimensional multinuclear solution NMR to determine the relationship between protein structure, temperature, and ionic strength. Ubiquitin resonances were monitored by 15N HSQC NMR experiments at varying temperatures and salt concentrations. Our results indicate that the structure of the encapsulated protein at low temperature experiences perturbation arising from two major influences, which are reverse micelle-protein interactions and low-temperature effects (e.g., cold denaturation). These two effects are impossible to distinguish under conditions of low ionic strength. Elevated concentrations of nondenaturing salt solutions defeat the effects of reverse micelle-protein interactions and reveal low-temperature protein unfolding. High ionic strength shielding stabilizes the reverse micelle at low temperatures, which reduces the electrostatic interaction between the protein and reverse micelle surfaces, allowing the phenomenon of cold denaturation to be explored.  相似文献   

2.
Photoinduced disruption of a sodium bis(2-ethylhexyl) sulfosuccinate (AOT) reverse micelle is triggered by a Malachite Green leuconitrile derivative (MGL). UV irradiation of MGL solubilized in an AOT-water-chloroform mixture creates a cationic surfactant that interacts electrostatically with the anionic AOT. We investigated the disruption of the reverse micelle by using proton nuclear magnetic resonance spectroscopy and found that UV irradiation of MGL decreases the number of water molecules solubilized in the interior of the AOT reverse micelles. Furthermore, the photoinduced disruption of the reverse micelle is shown to release ribonuclease A, which is trapped in the water in the interior of the AOT reverse micelle. This photoinduced release may offer a desirable transport system of biopolymers.  相似文献   

3.
6-Propionyl-2-(N,N-dimethyl)aminonaphtahalene, PRODAN, is widely used as a fluorescent molecular probe due to its significant Stokes shift in polar solvents. It is an aromatic compound with intramolecular charge-transfer (ICT) states which can be particularly useful as sensors. In this work, we performed absorption, steady-state, time-resolved fluorescence (TRES), and time-resolved area normalized emission (TRANES) spectroscopies on PRODAN dissolved in nonaqueous reverse micelles. The reverse micelles are composed of polar solvents/sodium 1,4-bis-2-ethylhexylsulfosuccinate (AOT)/n-heptane. Sequestered polar solvents included ethylene glycol (EG), propylene glycol (PG), glycerol (GY), formamide (FA), dimethylformamide (DMF), and dimethylacetamide (DMA). The experiments were performed with varying surfactant concentrations at a fixed molar ratio W(S) = [polar solvent]/[AOT]. In every reverse micelle studied, the results show that PRODAN undergoes a partition process between the external solvent and the reverse micelle interface. The partition constants, K(p), are quantified from the changes in the PRODAN emission and/or absorption spectra with the surfactant concentration. The K(p) values depend strongly on the encapsulated polar solvent and correlate quite well with the AOT reverse micelle interface's zones where PRODAN can exist and emits. Thus, the partition toward the reverse micelle interface is strongly favored in DMF and DMA containing micelles where the PRODAN emission comes only from an ICT state. For GY/AOT reverse micelles, the K(p) value is the lowest and only emission from the local excited (LE) state is observed. On the other hand, for EG/AOT, PG/AOT, and water/AOT reverse micelles, the K(p) values are practically the same and emission from both states (LE and ICT) is simultaneously detected. We show here that it is possible to control the PRODAN state emission by simply changing the properties of the AOT reverse micelle interfaces by choosing the appropriate polar solvent to make the reverse micelle media. Indeed, we present experimental evidence with the answer to the long time question about from which state does PRODAN emit, a process that can be controlled using the unique reverse micelle interfaces properties.  相似文献   

4.
反胶束是两亲分子在非极性溶剂中形成的一种有序组合体,在医药、化工、采油、胶束催化及酶催化等领域中有重要应用.与胶束溶液相比,人们对反胶束的形成与结构的了解至今仍不充分.特别是对于由混合表面活性剂形成的反胶束的研究几乎无人涉及.本文采用动态光散射、电导及荧光光谱等手段对阴离子表面活性剂AOT与非离子表面活性剂形成的混合反胶束进行了研究,旨在探讨利用表面活性剂的复配来调节和控制反胶束的结构和性能.亚实验部分二异辛基磺化琉璃酸钠(AOT,Sigma公司);Brij30为含4个氧乙烯基(EO基)的十二碳醇(AcrosOrgani…  相似文献   

5.
The effect of confinement on the dynamical properties of liquid water is investigated for water enclosed in cationic reverse micelles. The authors performed mid-infrared ultrafast pump-probe spectroscopy on the OH-stretch vibration of isotopically diluted HDO in D(2)O in cetyltrimethylammonium bromide (CTAB) reverse micelles of various sizes. The authors observe that the surfactant counterions are inhomogeneously distributed throughout the reverse micelle, and that regions of extreme salinity occur near the interfacial Stern layer. The authors find that the water molecules in the core of the micelles show similar orientational dynamics as bulk water, and that water molecules in the counterion-rich interfacial region are much less mobile. An explicit comparison is made with the dynamics of water confined in anionic sodium bis(2-ethythexyl) sulfosuccinate (AOT) reverse micelles. The authors find that interfacial water in cationic CTAB reverse micelles has a higher orientational mobility than water in anionic AOT reverse micelles.  相似文献   

6.
Many of the difficulties presented by large, aggregation-prone, and membrane proteins to modern solution NMR spectroscopy can be alleviated by actively seeking to increase the effective rate of molecular reorientation. An emerging approach involves encapsulating the protein of interest within the protective shell of a reverse micelle and dissolving the resulting particle in a low viscosity fluid, such as the short chain alkanes. Here we present the encapsulation of proteins with high structural fidelity within reverse micelles dissolved in liquid ethane. The addition of appropriate cosurfactants can significantly reduce the pressure required for successful encapsulation. At these reduced pressures, the viscosity of the ethane solution is low enough to provide sufficiently rapid molecular reorientation to significantly lengthen the spin-spin NMR relaxation times of the encapsulated protein.  相似文献   

7.
Polypyrrole (PPy) nanotubes were readily fabricated through chemical oxidation polymerization in sodium bis(2-ethylhexyl) sulfosuccinate (AOT) reverse (water-in-oil) emulsions. The reverse cylindrical micelle phase was characterized, and the key factors affecting the formation of PPy nanotubes were systematically inspected. AOT reverse cylindrical micelles were prepared via a cooperative interaction between an aqueous FeCl3 solution and AOT in an apolar solvent. In the H2O/FeCl3/AOT/apolar solvent system, the aqueous FeCl3 solution played a role in increasing the ionic strength and decreasing the second critical micelle concentration of AOT. As a result, AOT reverse cylindrical micelles could be spontaneously formed in an apolar solvent. In addition, iron cations were adsorbed to the anionic AOT headgroups that were capable of extracting metal cations from the aqueous core. Under these conditions, the addition of pyrrole monomer resulted in the chemical oxidation polymerization of the corresponding monomer at the surface of AOT reverse cylindrical micelles, followed by the formation of tubular PPy nanostructures. In a typical composition (74.0 wt % hexane, 22.4 wt % AOT, and 3.6 wt % aqueous FeCl3 solution at 15 degrees C), the average diameter of PPy nanotubes was approximately 94 nm and their length was more than 2 mum. The PPy nanotube dimensions were affected by synthetic variables such as the weight ratio of aqueous FeCl3 solution/AOT, type of apolar solvent, and reaction temperature. Moreover, the relationship between the diameter and the conductivity of the nanotubes was investigated.  相似文献   

8.
The refolding kinetics of the reduced, denatured hen egg white lysozyme in sodium bis(2-ethylhexyl)sulfosuccinate (AOT)-isooctane-water reverse micelles at different water-to-surfactant molar ratios has been investigated by fluorescence spectroscopy and UV spectroscopy. The oxidative refolding of the confined lysozyme is biphasic in AOT reverse micelles. When the water-to-surfactant molar ratio (omega 0) is 12.6, the relative activity of encapsulated lysozyme after refolding for 24 h in AOT reverse micelles increases 46% compared with that in bulk water. Furthermore, aggregation of lysozyme at a higher concentration (0.2 mM) in AOT reverse micelles at omega 0 of 6.3 or 12.6 is not observed; in contrast, the oxidative refolding of lysozyme in bulk water must be at a lower protein concentration (5 microM) in order to avoid a serious aggregation of the protein. For comparison, we have also investigated the effect of AOT on lysozyme activity and found that the residual activity of lysozyme decreases with increasing the concentration of AOT from 1 to 5 mM. When AOT concentration is larger than 2 mM, lysozyme is almost completely inactivated by AOT and most of lysozyme activity is lost. Together, our data demonstrate that AOT reverse micelles with suitable water-to-surfactant molar ratios are favorable to the oxidative refolding of reduced, denatured lysozyme at a higher concentration, compared with bulk water.  相似文献   

9.
Reverse micelles currently gain increasing interest in chemical technology. They also become important in biomolecular NMR due to their ability to host biomolecules such as proteins. In the present paper, a procedure for the preparation of high-pressure NMR samples containing reverse micelles dissolved in supercritical xenon is presented. These reverse micelles are formed by sodium bis(2-ethylhexyl) sulfosuccinate (AOT). For the first time, NMR spectroscopy could be applied to reverse micelles in supercritical xenon. The AOT/H(2)O/Xe system was studied as a function of experimental parameters such as xenon pressure, water content, and salt concentration. Optimum conditions for reverse micelle formation in supercritical xenon could be determined. It is, furthermore, demonstrated that biomolecules such as amino acids and proteins can be incorporated into the reverse micelles dissolved in supercritical xenon.  相似文献   

10.
The interior water pool of aerosol OT (AOT) reverse micelles tends toward bulk water properties as the micelle size increases. Thus, deviations from bulk water behavior in large reverse micelles are less expected than in small reverse micelles. Probing the interior water pool of AOT reverse micelles with a highly charged decavanadate (V(10)) oligomer using (51)V NMR spectroscopy shows distinct changes in solute environment. For example, when an acidic stock solution of protonated V(10) is placed in a reverse micelle, the (51)V chemical shifts show that the V(10) is deprotonated consistent with a decreased proton concentration in the intramicellar water pool. Results indicate that a proton gradient exists inside the reverse micelles, leaving the interior neutral while the interfacial region is acidic.  相似文献   

11.
Electrochemical extraction of proteins by reverse micelle formation   总被引:1,自引:0,他引:1  
The transfer of proteins by the anionic surfactant bis(2-ethylhexyl) sulfosuccinate (AOT) at a polarized 1,2-dichloroethane/water (DCE/W) interface was investigated by means of ion-transfer voltammetry. When the tetrapentylammonium salt of AOT was added to the DCE phase, the facilitated transfer of certain proteins, including cytochrome c (Cyt c), ribonuclease A, and protamine, could be controlled electrochemically, and a well-defined anodic wave for the transfer was obtained. At low pH values (e.g., pH 3.4), the anodic wave was usually well-separated from the wave for the formation of protein-free (i.e., unfilled) reverse micelles. The anodic wave for the protein transfer was analyzed by applying the theory for facilitated transfer of ions by charged ligands and then supplying information regarding the number of AOT anions reacting with one protein molecule and the total charge carried by the protein transfer. However, controlled-potential electrolyses performed for the transfer of Cyt c, which is red, revealed that the protein-AOT complexes were unstable in DCE and liable to aggregate at the interface when the pH of the W phase was 3.4. At pH 7.0, when formation of unfilled reverse micelles occurred simultaneously, the protein-AOT complexes appeared to be stabilized, probably via fusion with unfilled reverse micelles.  相似文献   

12.
Herein, we report a study of the interactions between different nonaqueous polar solvents, namely, ethylene glycol (EG), propylene glycol (PG), glycerol (GY), dimethylformamide (DMF), and dimethylacetamide (DMA), and the polar heads of sodium 1,4‐bis‐2‐ethylhexylsulfosuccinate (AOT) in nonaqueous AOT/n‐heptane reverse micelles. The goal of our study is to gain insights into the unique reverse‐micelle microenvironment created upon encapsulation of these polar solvents. For the first time, the study is focused on determining which regions of the AOT molecular structure are involved in the interactions with the polar solvents. We use FTIR spectroscopy—a noninvasive technique—to follow the changes in the AOT C?O band and the symmetric and asymmetric SO3? vibration modes upon increasing the content of polar solvents in the micelles. The results show that GY interacts through H bonds with the SO3? group, thereby removing the Na+ counterions from the interface remaining in the polar core of the micelles. PG and EG interact through H bonds, mainly with the C?O group of AOT, penetrating into the oil side of the interface. Thus, they interact weakly with the Na+ counterion, which seems to be close to the AOT sulfonate group. Finally, DMF and DMA, encapsulated inside the reverse micelles, interact neither with the C?O nor with the SO3? groups, but their weakly bulk‐associated structure is broken because of the interactions with Na+. We suggest that DMF and DMA can complex the Na+ ions through their carbonyl and nitrogen groups. Hence, our results do not only give insights into how the constrained environment affects the bulk properties of polar solvents encapsulated within reverse micelles but—more importantly—they also help us to answer the tricky question about which regions of the AOT moiety are involved in the interactions with the polar solvents. We believe that our results show a clear picture of the interactions present at the nonaqueous reverse‐micelle interface; this is important because these media are interesting nanoreactors for heterogeneous chemistry, templates for nanoparticles, and models for membranes.  相似文献   

13.
Proton transfer from the photoacid 8‐hydroxy‐1,3,6‐pyrenetrisulfonic acid (HPTS) to water is studied in reverse micelles with ionic (AOT=sodium dioctyl sulfosuccinate) and non‐ionic (BRIJ‐30=polyoxyethylene(4)lauryl ether) surfactants. The dynamics are studied by probing the transient electronic absorption and transient vibrational absorption, both with sub‐picosecond resolution. The reverse micelle sizes range from approximately 1.6 to 5.5 nm in diameter. For both surfactants it is found that the rate of proton transfer decreases with decreasing reverse micelle size, regardless of surfactant. In addition, for AOT reverse micelles, a fraction of the photoacid molecules exhibit non‐radiative decay, preventing proton transfer.  相似文献   

14.
The recombination of thiocyanate anion radicals, (SCN) 2 , formed pulse radiolytically within the water pools of reverse micelles stabilized with anionic AOT and nonionic Igepal surfactants, was proved as an indicator reaction to study intermicellar exchange. It was found that the exchange process is slower inIgepal than in AOT reverse micelles with the same water to surfactant ratio. The apparent activation enthalpy and entropy of the exchange process were determined in different alkanes. For the AOT and Igepal reverse micelles the activation parameters increase with the droplet size, but for the AOT systems they do not significantly change with the increase of droplet concentration. For non-percolated systems the activation parameters for Igepal reverse micelles approach those for AOT reverse micelles. This result supports existing suggestions that the mechanism of intermicellar exchange does not differ in principle between reverse micelles stabilized with ionic and nonionic surfactants.  相似文献   

15.
The higher order structure of proteins solubilized in an bis(2-ethylhexyl) sulfosuccinate sodium (AOT) reverse micellar system was investigated. From circular dichroic (CD) measurement, CD spectra of cytochrome c, which is solubilized at the interface of reverse micelles, markedly changed on going from buffer solution to the reverse micellar solution, and the ellipticity values in the far- and near-UV regions decreased with decreasing the water content (W0: molar ratio of water to AOT), indicating that the secondary and tertiary structures of cytochrome c changed with the water content. The ellipticity of ribonuclease A, which is solubilized in the center of micellar water pool, in the near-UV region was dependent on W0 and became minimum when W0 of ca. 8 while the ellipticity in the far-UV region was almost constant, indicating that the tertiary structure of ribonuclease A was affected by the water content, but the secondary structure was conserved. The degree of curvature of the micellar interface appears to influence the protein structure because the reverse micelle size is linearly proportional to the W0 value. As evidence of this, when the micelle size was comparable to the protein's dimensions, the structures were more affected by the water content. Judging from the dependence of the factor influencing the protein structure on the protein species, the location of solubilized protein in reverse micelles is significantly related to whether the protein structure in the system is affected by the micellar interface. In the cases of cytochrome c and lysozyme, the ellipticity against W0 was dependent on the AOT concentration. In contrast, ribonuclease A gave very similar ellipticity values whatever the AOT concentration. In the n-hexane micellar system, cytochrome c exhibited lower ellipticity values and ribonuclease A in the lower W0 range (W0 < ca. 8) higher ellipticity values. These results indicated that the interaction between the protein and the micellar interface is a dominant factor influencing the protein structure in reverse micelles, and that it is governed by the location of solubilized proteins and the state of the micellar interface.  相似文献   

16.
Enzyme-mediated catalysis is attributed to enzyme–substrate interactions, with models such as “induced fit” and “conformational selection” emphasizing the role of protein conformational transitions. The dynamic nature of the protein structure, thus, plays a crucial role in molecular recognition and substrate binding. As large-scale protein motions are coupled to water motions, hydration dynamics play a key role in protein dynamics, and hence, in enzyme catalysis. Here, microfluidic techniques and time-dependent fluorescence Stokes shift (TDFSS) measurements are employed to elucidate the role of nanoscopic water dynamics in the interaction of an enzyme, α-Chymotrypsin (CHT), with a substrate, Ala-Ala-Phe-7-amido-4-methylcoumarin (AMC) in the cationic reverse micelles of benzylhexadecyldimethylammonium chloride (BHDC/benzene) and anionic reverse micelles of sodium bis(2-ethylhexyl)sulfosuccinate (AOT/benzene). The kinetic pathways unraveled from the microfluidic setup are consistent with the “conformational selection” fit for the interaction of CHT with AMC in the cationic reverse micelles, whereas an “induced fit” mechanism is indicated for the anionic reverse micelles. In the cationic reverse micelles of BHDC, faster hydration dynamics (≈550 ps) aid the pathway of “conformational selection”, whereas in the anionic reverse micelles of AOT, the significantly slower dynamics of hydration (≈1600 ps) facilitate an “induced fit” mechanism for the formation of the final enzyme–substrate complex. The role of water dynamics in dictating the mechanism of enzyme–substrate interaction becomes further manifest in the neutral reverse micelles of Brij-30 and Triton X-100. In the former, the faster water dynamics aid the “conformational selection” pathway, whereas the significantly slower dynamics of water molecules in the latter are conducive to the “induced fit” mechanism in the enzyme–substrate interaction. Thus, nanoscopic water dynamics act as a switch in modulating the pathway of recognition of an enzyme (CHT) by the substrate (AMC) in reverse micelles.  相似文献   

17.
We have compared micelles, reverse micelles, and reverse micelles encapsulating myoglobin using electrospray mass spectrometry. To enable a direct comparison, the same surfactant (cetyltrimethylammonium bromide (CTAB)) was used in each case and micelle formation was controlled by manipulating the aqueous and organic phases. Tandem mass spectra of the resulting micelle preparations reveal differences in the ions that dissociate: those that dissociate from regular micelles have undergone >90% exchange of bromide ions from the headgroup with acetate ions from bulk solvent. By contrast, for reverse micelles, ions are detected without exchange of bromide ions from the headgroup, consistent with their protection in the core of the micellar structure. Tandem mass spectra of micelles and reverse micelles reveal polydispersed assemblies containing several hundred CTAB molecules, indicating the coalescence of the micellar systems to form large assemblies. For reverse micelles incorporating myoglobin, spectra are consistent with one holo myogolobin molecule in association with approximately 270 CTAB molecules. Overall, therefore, our results show that the solution-phase orientation of surfactants is preserved during electrospray and are consistent with interactions being maintained between surfactants and an encapsulated protein.  相似文献   

18.
Hydrophobic liquid membranes have a high technological potential in many fields of separation science. The dynamics of these systems is very complex and still not fully understood. In this work we studied the effect of the incorporation of cationic and anionic L-tryptophan at pH 1.8 and 10.0, respectively, in Aerosol-OT reverse micelles performing small angle X-ray scattering experiments. The use of a synchrotron radiation source allowed efficient in situ data acquisition. Several insights on L-tryptophan transport dynamics through hydrophobic membranes containing AOT could be obtained from these SAXS experiments, such as amino acid site localization and changes in the reverse micelle sizes.  相似文献   

19.
The excited-state proton transfer and phototautomerization of 7-hydroxy-4-methylcoumarin (7H4MC) dye has been studied in the confined water pools of AOT reverse micelles using steady-state and time-resolved fluorescence measurements. In the "dry" reverse micelles ([water]/[AOT], w(0) = 0), only the neutral form of the dye is present both in the ground and the excited states. At higher w(0) values, three prototropic forms, namely, neutral, anionic, and tautomeric, can be identified in the excited state, although only the neutral form of the dye is present in the ground state. From steady-state fluorescence results and time-resolved area-normalized emission spectra (TRANES), it is indicated that the anionic and tautomeric forms of the dye are the excited-state reaction products and that they arise apparently independently from the excited neutral form of the dye. In bulk water, however, there is no evidence of the tautomeric species and only the anionic form is observed in the excited state. The fluorescence quenching results of the three forms of 7H4MC by the different quenchers, potassium iodide, aniline, and N, N-dimethylaniline, suggest that the distribution of 7H4MC molecules in the reverse micelles is not diverse but that the different prototropic forms arise from the same population of the excited dye in the interfacial region.  相似文献   

20.
Neutron Spin-Echo (NSE) spectroscopy has been employed to study the interfacial properties of reverse micelles formed with the common surfactant sodium bis-2-ethylhexyl-sulfosuccinate (AOT) in liquid alkane solvents and compressed propane. NSE spectroscopy provides a means to measure small energy transfers for incident neutrons that correspond to thermal fluctuations on the nanosecond time scale and has been applied to the study of colloidal systems. NSE offers the unique ability to perform dynamic measurements of thermally induced shape fluctuation in the AOT surfactant monolayer. This study investigates the effects of the bulk solvent properties, water content, and the addition of octanol cosurfactant on the bending elasticity of AOT reverse micelles and the reverse micelle dynamics. By altering these solvent properties, specific trends in the bending elasticity constant, k, are observed where increasing k corresponds to an increase in micelle rigidity and a decrease in intermicellar exchange rate, k(ex). The observed corresponding trends in k and k(ex) are significant in relating the dynamics of microemulsions and their application as a reaction media. Compressed propane was also examined for the first time with a high-pressure, compressible bulk solvent where variations in temperature and pressure are used to tune the properties of the bulk phase. A decrease in the bending elasticity is observed for the d-propane/AOT/W = 8 reverse micelle system by simultaneously increasing the temperature and pressure, maintaining constant density. With isopycnic conditions, a constant translational diffusion of the reverse micelles through the bulk phase is observed, conforming to the Stokes-Einstein relationship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号