首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Au nanoparticles modified with electroactive Prussian blue (PB) were for the first time synthesized by a simple chemical method. Transmission electronic microscopy showed that the average size of the Prussian blue shell/Au core hybrid composite (PB@Au) was about 50 nm, and Fourier transform IR, UV-vis spectra, and cyclic voltammetry confirmed the existence of PB on the surface of Au nanoparticles. Using the LbL technique, multilayer thin films of PB@Au nanoparticles were prepared by the alternate adsorption of oppositely charged linear polyelectrolyte poly(allylamine hydrochloride) (PAH) onto ITO glass for the construction of a hydrogen peroxide sensor. The novel multilayer films were characterized by SEM, cyclic voltammetry, and UV-visible absorption spectroscopy. The {PAH/PB@Au}n multilayer-modified electrode showed a well-defined pair of redox peaks and dramatic catalytic activity toward the reduction of hydrogen peroxide.  相似文献   

2.
PAMAM-Au nanocomposites prepared by reduction of HAuCl4 with NaBH4 in the presence of the sixth-generation polyamidoamine (PAMAM) took a unique structure, in which the 2 nm-sized Au nanoparticles were encapsulated in the interior cavities of the PAMAM molecules. The PAMAM-Au nanocomposites as a new type of nanomaterial were assembled layer-by-layer with myoglobin (Mb) into {PAMAM-Au/Mb}n films on solid surfaces, which was confirmed by quartz crystal microbalance (QCM), UV-vis spectroscopy, and cyclic voltammetry (CV). The direct electrochemistry of Mb in the films assembled on pyrolytic graphite (PG) electrodes was realized and used to catalyze the reduction of hydrogen peroxide. As compared to {PAMAM/Mb}n films containing no Au nanoparticles, the {PAMAM-Au/Mb}n films showed much better electrochemical and electrocatalytic properties, indicating the conductive effect of Au nanoparticles inside PAMAM on bridging electron transfer between Mb and PG electrodes.  相似文献   

3.
《Electroanalysis》2006,18(16):1627-1630
The surface of a gold (Au) electrode was coated with layer‐by‐layer (LbL) thin films composed of poly(vinyl sulfate) (PVS) and different type of poly(amine)s including poly(allylamine) (PAH), poly(ethyleneimine) (PEI) and poly(diallyldimethylammonium chloride) (PDDA) and redox properties of ferricyanide ion ([Fe(CN)6]3?) on the LbL film‐coated Au electrodes were studied. The LbL film‐coated electrodes exhibited redox response to [Fe(CN)6]3? ion when the outermost surface of the LbL film was covered with the cationic poly(amine)s while virtually no response was observed on the LbL film‐coated electrodes whose outermost surface was covered with PVS due to an electrostatic repulsion between [Fe(CN)6]3? ion and the negatively‐charged PVS layer. The redox properties of [Fe(CN)6]3? ion on the LbL film‐coated electrodes significantly depended on the type of polycationic materials in the LbL film. The LbL film‐coated electrodes which had been immersed in the [Fe(CN)6]3? solution for 15 min exhibited redox response even in a [Fe(CN)6]3? ion‐free buffer solution, suggesting that [Fe(CN)6]3? ion is confined in the films. In the buffer solution, redox peaks were observed between +0.1 and 0.4 V depending on the type of polycations in the film. Thus, [Fe(CN)6]3? ion can be confined in the film and the redox potential is polycation‐dependent.  相似文献   

4.
Prussian blue (PB) particles with the size of ca. 5 nm were synthesized and immobilized in a multilayer structure, as a strategy for the potential development of an amperometric transducer for oxidase-enzyme-based biosensors. Multilayer films composed of PB and poly(allylamine hydrochloride) (PAH) were prepared via layer-by-layer (LbL) sequential deposition. The process was carefully monitored by UV-vis spectroscopy and cyclic voltammetry. The increase of the redox current peaks during the layer-by-layer deposition demonstrated that charge propagation within the film occurs. Linear increase of UV-vis absorbance with the number of deposited bilayers indicates that well-organized systems have been elaborated. ITO electrodes coated with PB/PAH films were used successfully for detecting H2O2, sensitivity being dependent on the number of PB/PAH layers.  相似文献   

5.
The adsorption of Prussian blue (PB) colloids within layers of polyelectrolytes has been achieved by a reiterative immersion-rinse approach. Multilayer assemblies consisting of alternate layers of these components have been prepared by the layer-by-layer (LbL) self-assembly technique. Both processes have been carefully monitored by cyclic voltammetry and infrared and UV-visible spectroscopy. Linear increase in the IR and UV-visible light absorbance with the number of deposited layers indicates that well-organized lamellar systems have been elaborated. Size and distribution of Prussian blue nanoparticles in these systems have been investigated by AFM. The effect of the molar concentration of the PB dipping solution on the adsorption process and the distribution of the PB colloids has also been described. Finally, magnetic properties of these assemblies have been studied by low-temperature ESR measurements. Indeed, this new approach of hybrid LbL films opens the way to a new class of nanostructured lamellar compounds.  相似文献   

6.
Self-assembled electrodes consisting of TiO(2) nanoparticles and poly(vinyl sulfonic acid) (PVS) were prepared by the layer-by-layer (LbL) technique. The electrostatic interaction between the TiO(2) nanoparticles and PVS allowed the growth of visually uniform multilayers of the composite, with high control of the thickness and nanoarchitecture. The electrochemical and chromogenic properties of these TiO(2)/PVS films were examined in an electrolytic solution of 0.5 M LiClO(4)/propylene carbonate. The presence of two intercalation sites was noted during the positive potential scan, and they were attributed to different mobilities of charge carriers. Several charge/discharge cycles demonstrated the trapping of charge carriers in the TiO(2) sites. The absorbance change associated with the oxidation of the trapping sites was attributed to electronic transitions involving energy states in the gap band formed due to the strong distortion of the TiO(2) host. Using the quadratic logistic equation (QLE), it was possible to analyze the electronic intervalence transfer from Ti(3+) to Ti(4+). Using the parameters obtained from this fitting, the amount of trapping sites in the LbL film was also determined. Electrochemical impedance spectroscopy (EIS) data gave the time constant associated with diffusion and the trapping sites. The diffusion coefficient of lithium ions changed from ca. 4.5 x 10(-13) cm(2) s(-1) to 3.0 x 10(-14) cm(2) s(-1) for all the potential range applied, indicating that PVS did not hinder the ionic transport within the LbL film. Finally, on the basis of the spectroelectrochemical data and scanning electron micrographs, the trapping effects were attributed to the colloidal particles of Li(0.55)TiO(2).  相似文献   

7.
Alternate adsorption of oppositely charged myoglobin (Mb) and gold nanoparticles with different sizes were used to assemble {Au/Mb}n layer-by-layer films on solid surfaces by electrostatic interaction between them. The direct electrochemistry of Mb was realized in {Au/Mb}n films at pyrolytic graphite (PG) electrodes, showing a pair of well-defined, nearly reversible cyclic voltammetry (CV) peaks for the Mb heme FeIII/FeII redox couple. Quartz crystal microbalance (QCM), electrochemical impedance spectroscopy (EIS), and CV were used to monitor or confirm the growth of the films. Compared with other Mb layer-by-layer films with nonconductive nanoparticles or polyions, {Au/Mb}n films showed much improved properties, such as smaller electron-transfer resistance (Rct) measured by EIS with Fe(CN)3-/4- redox probe, higher maximum surface concentration of electroactive Mb (Gamma*max), and better electrocatalytic activity toward reduction of O2 and H2O2, mainly because of the good conductivity of Au nanoparticles. Because of the high biocompatibility of Au nanoparticles, adsorbed Mb in the films retained its near native structure and biocatalytic activity. The size effect of Au nanoparticles on the electrochemical and electrocatalytic activity of Mb in {Au/Mb}n films was investigated, demonstrating that the {Au/Mb}n films assembled with smaller-sized Au nanoparticles have smaller Rct, higher Gamma*max, and better biocatalytic reactivity than those with larger size.  相似文献   

8.
We demonstrate the mediation of charge transport and release in thin films and devices by shifting the redox properties of layers of metal complexes by light. The nanoscale surface arrangement of both photo‐ and electrochemically‐active components is essential for the function of the thin films. Layers of well‐defined ruthenium complexes on indium‐tin‐oxide electrodes provide electron‐transport channels that allow the electrochemical addressing of layers of isostructural cobalt complexes. These cobalt complexes are electrochemically inactive when assembled directly on transparent metal‐oxide electrodes. The interlayer of ruthenium complexes on such electrodes allows irreversible oxidation of the cobalt complexes. However, shifting the redox properties of the ruthenium complexes by excitation with light opens up an electron‐transport channel to reduce the cobalt complexes; hence releasing the trapped positive charges.  相似文献   

9.
The electrochemical behavior of arrays of Au nanoparticles assembled on Au electrodes modified by 11-mercaptoundecanoic acid (MUA) and poly-L-lysine (PLYS) was investigated as a function of the particle number density. The self-assembled MUA and PLYS layers formed compact ultrathin films with a low density of defects as examined by scanning tunneling microscopy. The electrostatic adsorption of Au particles of 19 +/- 3 nm on the PLYS layer resulted in randomly distributed arrays in which the particle number density is controlled by the adsorption time. In the absence of the nanoparticles, the dynamics of electron transfer involving the hexacynoferrate redox couple is strongly hindered by the self-assembled film. This effect is primarily associated with a decrease in the electron tunneling probability as the redox couple cannot permeate through the MUA monolayer at the electrode surface. Adsorption of the Au nanoparticles dramatically affects the electron-transfer dynamics even at low particle number density. Cyclic voltammetry and impedance spectroscopy were interpreted in terms of classical models developed for partially blocked surfaces. The analysis shows that the electron transfer across a single particle exhibits the same phenomenological rate constant of electron transfer as for a clean Au surface. The apparent unhindered electron exchange between the nanoparticles and the electrode surface is discussed in terms of established models for electron tunneling across metal-insulator-metal junctions.  相似文献   

10.
Nanoparticles of a Prussian blue (PB) analogue, copper hexacyanoferrate, were synthesized by using ultrasonic radiation and characterized by spectroscopic and electrochemical techniques. The nanoparticles (ca. 10 nm diameter) were immobilized onto transparent indium tin oxide electrodes by electrostatic layer-by-layer deposition. These modified electrodes showed interesting electrochromic properties, changing the coloration during the redox process from brown to orange when oxidized. The nanostructured electrode presented high stability, in contrast to that observed for PB nanoparticles; this fact must be related to the maintenance of the electrostatic assembly because the oxidized compound, CuII/FeIII(CN)6, still possesses a negative excess of charge due to the high number of cyanide groups that link the nanoparticles with the polycation, assuring the integrity of the whole electrostatic assembled film.  相似文献   

11.
Stable layer-by-layer electroactive films were grown on pyrolytic graphite (PG) electrodes by alternate adsorption of layers of polyanionic poly(vinyl sulfonate) (PVS) and positively charged hemoglobin (Hb) from their aqueous solutions. Cyclic voltammetry (CV) of [PVS/Hb]n films showed a pair of well-defined and nearly reversible peaks at about - 0.28 V vs. SCE at pH 5.5, characteristic of Hb heme Fe(III)/Fe(II) redox couple. The process of (PVS/Hb) bilayer growth was monitored and confirmed by CV, X-ray photoelectron spectroscopy (XPS) and UV-Vis spectroscopy. While the amount of Hb adsorbed in each bilayer was the same, the amount of electroactive Hb in each bilayer decreased dramatically with increase of the number of bilayer, and electroactivity was just extended to 8 [PVS/Hb] bilayers. CVs of [PVS/Hb]8 films maintained stable in buffers containing no Hb. Positions of Soret band of Hb in [PVS/Hb]n films grown on transparent glass slides suggest that Hb in the films keeps its secondary structure similar to its native state in a wide pH range. Trichloroacetic acid and nitrite were catalytically reduced by [PVS/Hb]8 films with significant lowering of the electrode potential required.  相似文献   

12.
Control of molecular and supramolecular properties is used to obtain a new advanced hybrid material based on Prussian blue nanoparticles (PB NPs). This hybrid material is obtained through a self-assembled Layer-by-Layer (LbL) approach combining the advantageous features of β-cyclodextrin (β-CD) polysaccharides, PB NPs and poly(allylamine hydrochloride) from electrostatic interaction between the deposited layers. Transmission electronic microscopy images suggested that PB NPs were protected by β-CD polysaccharides that prevent the aggregation phenomena. In addition, as confirmed by scanning electronic microscopy images, it was found that PB NPs are organized in microcubic supramolecular like structures via a mesoscale self-assembly process. Interestingly, the 3-bilayer {PAH/PB-CD} film exhibited a higher density of microcubic structures and a high electrochemical response with PB sites available for redox reactions at a supramolecular level. By utilizing fewer bilayers and consequently less material deposition, the formed {PAH/PB-CD} multilayer films of a tuneable conductivity can be expected to have interesting future applications for host-guest like dependent electrochemical biosensing designs.  相似文献   

13.
A two-channel electrochemical quartz crystal microbalance (EQCM) was used to investigate the cyclic voltammetric behavior of two Prussian blue (PB) film-modified Au electrodes in a two-electrode con-figuration in aqueous solution. The redox peaks observed in the two-electrode cyclic voltammogram (CV) are assigned to the intrinsic redox transitions among the Everitt's salt, PB, and Prussian yellow for the film itself, the redox process of the Au substrate and the redox process of small-quantity ferri-/ferrocyanide impurities entrapped in the PB film, as also supported by ultraviolet-visible (UV-Vis) spectroelectrochemical data. The profile of the two-electrode solid-state CV for the PB powder sand-wiched between two gold-coated indium-tin oxide (ITO) electrodes is similar to that for two PB-modified Au electrodes in aqueous solution, implying similar origins for the corresponding redox peaks. The two-channel EQCM method is expected to become a highly effective technique for the studies of the two-electrode electrochemical behaviors of many other species/materials.  相似文献   

14.
J. Chen  Y. Miao  X. Wu 《Colloid Journal》2007,69(5):660-665
Prussian blue (PB) nanoparticles were immobilized onto gold electrodes using L-cysteine, 1,3-propanedithiol, and 1,8-octanedithiol as a bridge between the gold surface and the PB nanoparticles by the self-assembly method. The obtained PB/thiol/Au electrodes exhibit direct and indirect electrocatalytic activity toward DL-homocysteine (HCys) oxidation. It is possible for these PB nanoparticles modified electrodes to be used for the determination of HCys. The text was submitted by the authors in English.  相似文献   

15.
In this study, we use a conducting polymer precursor to build layer-by-layer (LbL) films. Thermal conversion of the polymer precursor to conducting polymer makes the LbL films intractable, so the LbL films can be used as protective layers in salt solution. The conducting polymer LbL film shows stabilizing effect on top of another LbL thin film that contains nanoparticles. The LbL film prepared in this study shows a 35-fold increase of conductivity than the literature values obtained from non-conducting polymer films. The stabilization of the films is the result of the polymerization of the conducting polymer, so other anionic polymers or nanoparticles may be used to afford additional functionalities.  相似文献   

16.
The dynamics of electron self-exchange between nanoparticles.   总被引:1,自引:0,他引:1  
The rate of electron self-exchange reactions between discretely charged metal-like cores of nanoparticles has been measured in multilayer films of nanoparticles by an electrochemical method. The nanoparticles are Au monolayer-protected clusters with mixed monolayers of hexanethiolate and mercaptoundecanoic acid ligands, linked to each other and to the Au electrode surface with carboxylate-metal ion-carboxylate bridges. Cyclic voltammetry of the nanoparticle films exhibits a series of well-defined peaks for the sequential, single-electron, double-layer charging of the 1.6-nm-diameter Au cores. The electron self-exchange is measured as a diffusion-like electron-hopping process, much as in previous studies of redox polymer films on electrodes. The average electron diffusion coefficient is DE = 10(+/-5) x 10(-8) cm2/s, with no discernible dependence on the state of charge of the nanoparticles or on whether the reaction increases or decreases the core charge. This diffusion constant corresponds to an average first-order rate constant kHOP of 2(+/-1) x 10(6) s(-1) and an average self-exchange rate constant, kEX, of 2(+/-1) x 10(8) M(-1) x s(-1), using a cubic lattice hopping model. This is a very large rate constant, considering the nominally lengthy linking bridge between the Au cores.  相似文献   

17.
Multilayers of poly(diallyldimethylammonium chloride) (PDDA) and citrate capped Au nanoparticles (AuNPs) anchored on sodium 3-mercapto-1-propanesulfonate modified gold electrode by electrostatic layer-by-layer assembly (LbL) technique are shown to be an excellent architecture for the direct electrochemical oxidation of As(III) species. The growth of successive layers in the proposed LbL architecture is followed by atomic force microscopy, UV-vis spectroscopy, quartz crystal microbalance with energy dissipation, and electrochemistry. The first bilayer is found to show rather different physico-chemical characteristics as compared to the subsequent bilayers, and this is attributed to the difference in the adsorption environments. The analytical utility of the architecture with five bilayers is exploited for arsenic sensing via the direct electrocatalytic oxidation of As(III), and the detection limit is found to be well below the WHO guidelines of 10ppb. When the non-redox active PDDA is replaced by the redox-active Os(2,2'-bipyridine)(2)Cl-poly(4-vinylpyridine) polyelectrolyte (PVPOs) in the LbL assembly, the performance is found to be inferior, demonstrating that the redox activity of the polyelectrolyte is futile as far as the direct electro-oxidation of As(III) is concerned.  相似文献   

18.
Prussian blue (PB) nanoparticles were immobilized in polyelectrolyte (PE) multilayers of various compositions and thickness. Films containing nanoparticles and poly(allylamine hydrochloride) (PAH) were formed using the layer-by-layer adsorption method. A layer of branched poly(ethyleneimine) (PEI) was used to anchor the multilayer structure at the surface of a gold electrode. The films exhibited electroactive properties, increasing with the number of deposited PB layers. The properties of PEI/(PB/PAH) n multilayers were then compared with the ones containing additionally the conductive polymer poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate) (PEDOT:PSS). We found that the addition of the conductive, water-soluble polymer enhances the electroactive properties of the multilayer films. It also increased sensitivity of the multilayer-covered electrodes for electrochemical detection of hydrogen peroxide.  相似文献   

19.
Glutathione‐decorated 5 nm gold nanoparticles (AuNPs) and oppositely charged poly(allylamine hydrochloride) (PAH) were assembled into {PAH/AuNP}n films fabricated layer‐by‐layer (LbL) on pyrolytic graphite (PG) electrodes. These AuNP/polyion films utilized the AuNPs as electron hopping relays to achieve direct electron transfer between underlying electrodes and redox proteins on the outer film surface across unprecedented distances >100 nm for the first time. As film thickness increased, voltammetric peak currents for surface myoglobin (Mb) on these films decreased but the electron transfer rate was relatively constant, consistent with a AuNP‐mediated electron hopping mechanism.  相似文献   

20.
The advent of techniques based upon the spontaneous assembly of different materials with control over molecular architecture has afforded the fabrication of composite thin films for many nanotechnological applications. The layer-by-layer technique (LbL), in particular, has largely been used in the molecular level processing of nanohybrid systems in the form of multilayers, owing to its low cost and experimental simplicity. In this study we describe the fabrication of a novel, bifunctional film containing platinum nanoparticles/polyamidoamine (PAMAM) dendrimers. Pt nanoparticles were chemically synthesized/stabilized in the presence of PAMAM dendrimers and incorporated in LbL films in conjunction with nickel tetrasulfonated phthalocyanine (NiTsPc). A metallophthalocyanine was chosen because of its well-defined redox activity. Indium tin oxide (ITO)-covered glass plates were used as substrates for film deposition. The nanocomposites displayed high electrocatalytic activity toward dopamine and hydrogen peroxide molecules, two compounds with dissimilar chemical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号