首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dynamics of opinion formation based on a majority rule model is studied in a network with the social hierarchical structure as one of its limits. The exit probability is found to change sensitively with the number of nodes in the system, but not with the parameter of homophyly characterizing the network structure. The consensus time is found to be a result of non-trivial interplay between the network structure characterized by the parameter of homophyly and the initial bias in opinion. For unbiased initial opinion, a common consensus is easier to be reached in a random network than a highly structured hierarchical network and it follows the behavior of the length of shortest paths. For biased initial opinion, a common consensus is easier to be reached in a hierarchical network, as the local majority opinion of the groups may take on the biased opinions and hence be the same.  相似文献   

2.
Kinetically-grown self-avoiding walks have been studied on Watts-Strogatz small-world networks, rewired from a two-dimensional square lattice. The maximum length L of this kind of walks is limited in regular lattices by an attrition effect, which gives finite values for its mean value 〈L 〉. For random networks, this mean attrition length 〈L 〉 scales as a power of the network size, and diverges in the thermodynamic limit (system size N ↦∞). For small-world networks, we find a behavior that interpolates between those corresponding to regular lattices and randon networks, for rewiring probability p ranging from 0 to 1. For p < 1, the mean self-intersection and attrition length of kinetically-grown walks are finite. For p = 1, 〈L 〉 grows with system size as N1/2, diverging in the thermodynamic limit. In this limit and close to p = 1, the mean attrition length diverges as (1-p)-4. Results of approximate probabilistic calculations agree well with those derived from numerical simulations.  相似文献   

3.
We focus on the heterogeneity of social networks and its role to the emergence of prevailing cooperators and sustainable cooperation. The social networks are representative of the interaction relationships between players and their encounters in each round of games. We study an evolutionary Prisoner's Dilemma game on a variant of Newman-Watts small-world network, whose heterogeneity can be tuned by a parameter. It is found that optimal cooperation level exists at some intermediate topological heterogeneity for different temptations to defect. That is, frequency of cooperators peaks at a certain specific value of degree heterogeneity — neither the most heterogeneous case nor the most homogeneous one would favor the cooperators. Besides, the average degree of networks and the adopted update rule also affect the cooperation level.  相似文献   

4.
In this paper, we investigate cascade defense and control in scale free networks via navigation strategy. It is found that with an appropriate parameter a, which is tunable in controlling the effect of degree in the navigation strategy, one can reduce the risk of cascade break down. By checking the distribution of efficient betweenness centrality (EBC) and the average EBC of vertices with degree k, the validity can be guaranteed. Despite the advantage of cascade defense, the degree based navigation strategy may also lead to lower network efficiency. To avoid this disadvantage, we propose a new navigation strategy. Importantly and interestingly, the new strategy can defend cascade break down effectively even without reducing the network efficiency. Distribution of the EBC and EBC-degree correlation of the new strategy are also investigated to explain the effectiveness in cascade defense.  相似文献   

5.
Biological and social systems have been found to possess a non-trivial underlying network structure of interacting components. An important current question concerns the nature of the evolutionary processes that have led to the observed structural patterns dynamically. By comparing the metabolic networks of evolutionarily closeby as well distant species, we present results on the evolution of these networks over short as well as long time scales. We observe that the amount of change in the reaction set of a metabolite across different species is proportional to the degree of the metabolite, thus providing empirical evidence for a `proportionate change' mechanism. We find that this evolutionary process is characterized by a power law with a universal exponent that is independent of the pair of species compared.  相似文献   

6.
We study the transport properties of model networks such as scale-free and Erd?s-Rényi networks as well as a real network. We consider few possibilities for the trnasport problem. We start by studying the conductance G between two arbitrarily chosen nodes where each link has the same unit resistance. Our theoretical analysis for scale-free networks predicts a broad range of values of G, with a power-law tail distribution $\Phi_{\rm SF}(G)\sim G^{-g_G}$ , where gG=2λ-1, and λ is the decay exponent for the scale-free network degree distribution. The power-law tail in ΦSF(G) leads to large values of G, thereby significantly improving the transport in scale-free networks, compared to Erd?s-Rényi networks where the tail of the conductivity distribution decays exponentially. We develop a simple physical picture of the transport to account for the results. The other model for transport is the max-flow model, where conductance is defined as the number of link-independent paths between the two nodes, and find that a similar picture holds. The effects of distance on the value of conductance are considered for both models, and some differences emerge. We then extend our study to the case of multiple sources ans sinks, where the transport is defined between two groups of nodes. We find a fundamental difference between the two forms of flow when considering the quality of the transport with respect to the number of sources, and find an optimal number of sources, or users, for the max-flow case. A qualitative (and partially quantitative) explanation is also given.  相似文献   

7.
Evolution of canalizing Boolean networks   总被引:1,自引:0,他引:1  
Boolean networks with canalizing functions are used to model gene regulatory networks. In order to learn how such networks may behave under evolutionary forces, we simulate the evolution of a single Boolean network by means of an adaptive walk, which allows us to explore the fitness landscape. Mutations change the connections and the functions of the nodes. Our fitness criterion is the robustness of the dynamical attractors against small perturbations. We find that with this fitness criterion the global maximum is always reached and that there is a huge neutral space of 100% fitness. Furthermore, in spite of having such a high degree of robustness, the evolved networks still share many features with “chaotic” networks.  相似文献   

8.
We study network traffic dynamics in a two dimensional communication network with regular nodes and hubs. If the network experiences heavy message traffic, congestion occurs due to finite capacity of the nodes. We discuss strategies to manipulate hub capacity and hub connections to relieve congestion and define a coefficient of betweenness centrality (CBC), a direct measure of network traffic, which is useful for identifying hubs which are most likely to cause congestion. The addition of assortative connections to hubs of high CBC relieves congestion very efficiently. An erratum to this article is available at .  相似文献   

9.
A model for a dynamic network consisting of changing local interactions is presented in this work. While the network maintains solely local connections, certain properties known only to Small World Networks may be extracted due to the dynamic nature of the model. At each time step the individuals are grouped into clusters creating neighborhoods or domains of fully connected agents. The boundaries of these domains change in time, corresponding to a situation where the links between individuals are dynamic only throughout the history of the network. A question that we pose is whether our model, which maintains a local structure such that diffusion calculations are possible, might lead to analytic or conceptual advances for the much more complicated case of diffusion on a static disordered network that exhibits the same macroscopic properties as our dynamic ordered network. To answer this, we compare certain properties which characterize the dynamic domain network to those of a Small World Network, and then analyze the diffusion coefficients for three possible domain mutations. We close with a comparison and confirmation of previous epidemiological work carried out on networks.  相似文献   

10.
We consider distributed networks, such as peer-to-peer networks, whose structure can be manipulated by adjusting the rules by which vertices enter and leave the network. We focus in particular on degree distributions and show that, with some mild constraints, it is possible by a suitable choice of rules to arrange for the network to have any degree distribution we desire. We also describe a mechanism based on biased random walks by which appropriate rules could be implemented in practice. As an example application, we describe and simulate the construction of a peer-to-peer network optimized to minimize search times and bandwidth requirements.  相似文献   

11.
Social networks in communities, markets, and societies self-organise through the interactions of many individuals. In this paper we use a well-known mechanism of social interactions — the balance of sentiment in triadic relations — to describe the development of social networks. Our model contrasts with many existing network models, in that people not only establish but also break up relations whilst the network evolves. The procedure generates several interesting network features such as a variety of degree distributions and degree correlations. The resulting network converges under certain conditions to a steady critical state where temporal disruptions in triangles follow a power-law distribution.  相似文献   

12.
The objective of this study is to design a procedure to characterize chaotic dynamical systems, in which they are mapped onto a complex network. The nodes represent the regions of space visited by the system, while the edges represent the transitions between these regions. Parameters developed to quantify the properties of complex networks, including those related to higher order neighbourhoods, are used in the analysis. The methodology is tested on the logistic map, focusing on the onset of chaos and chaotic regimes. The corresponding networks were found to have distinct features that are associated with the particular type of dynamics that generated them.  相似文献   

13.
The congestion transition triggered by multiple walkers walking along the shortest path on complex networks is numerically investigated. These networks are composed of nodes that have a finite capacity in analogy to the buffer memory of a computer. It is found that a transition from free-flow phase to congestion phase occurs at a critical walker density fc, which varies for complex networks with different topological structures. The dynamic pictures of congestion for networks with different topological structures show that congestion on scale-free networks is a percolation process of congestion clusters, while the dynamics of congestion transition on non-scale-free networks is mainly a process of nucleation.  相似文献   

14.
According to Fortunato and Barthélemy, modularity-based community detection algorithms have a resolution threshold such that small communities in a large network are invisible. Here we generalize their work and show that the q-state Potts community detection method introduced by Reichardt and Bornholdt also has a resolution threshold. The model contains a parameter by which this threshold can be tuned, but no a priori principle is known to select the proper value. Single global optimization criteria do not seem capable for detecting all communities if their size distribution is broad.  相似文献   

15.
Leslie Luthi 《Physica A》2008,387(4):955-966
Situations of conflict giving rise to social dilemmas are widespread in society. One way of studying these important phenomena is by using simplified models of individual behavior under conflicting situations such as evolutionary game theory. Starting from the observation that individuals interact through networks of acquaintances, we study the evolution of cooperation on model and real social networks through well known paradigmatic games. Using a new payoff scheme which leaves replicator dynamics invariant, we find that cooperation is sustainable in such networks, even in the difficult case of the prisoner’s dilemma. The evolution and stability of cooperation implies the condensation of game strategies into the existing community structures of the social network in which clusters of cooperators survive thanks to their higher connectivity towards other fellow cooperators.  相似文献   

16.
We model the Internet as a network of interconnected Autonomous Systems which self-organize under an absolute lack of centralized control. Our aim is to capture how the Internet evolves by reproducing the assembly that has led to its actual structure and, to this end, we propose a growing weighted network model driven by competition for resources and adaptation to maintain functionality in a demand and supply balance. On the demand side, we consider the environment, a pool of users which need to transfer information and ask for service. On the supply side, ASs compete to gain users, but to be able to provide service efficiently, they must adapt their bandwidth as a function of their size. Hence, the Internet is not modeled as an isolated system but the environment, in the form of a pool of users, is also a fundamental part which must be taken into account. ASs compete for users and big and small come up, so that not all ASs are identical. New connections between ASs are made or old ones are reinforced according to the adaptation needs. Thus, the evolution of the Internet can not be fully understood if just described as a technological isolated system. A socio-economic perspective must also be considered.  相似文献   

17.
A concept of higher order neighborhood in complex networks, introduced previously [Phys. Rev. E 73, 046101 (2006)], is systematically explored to investigate larger scale structures in complex networks. The basic idea is to consider each higher order neighborhood as a network in itself, represented by a corresponding adjacency matrix, and to settle a plenty of new parameters in order to obtain a best characterization of the whole network. Usual network indices are then used to evaluate the properties of each neighborhood. The identification of high order neighborhoods is also regarded as intermediary step towards the evaluation of global network properties, like the diameter, average shortest path between node, and network fractal dimension. Results for a large number of typical networks are presented and discussed.  相似文献   

18.
Xutao Wang  Guanrong Chen 《Physica A》2007,384(2):667-674
In this paper, a new algorithm is proposed, which uses only local information to analyze community structures in complex networks. The algorithm is based on a table that describes a network and a virtual cache similar to the cache in the computer structure. When being tested on some typical computer-generated and real-world networks, this algorithm demonstrates excellent detection results and very fast processing performance, much faster than the existing comparable algorithms of the same kind.  相似文献   

19.
Xianyu Bo  Jianmei Yang 《Physica A》2010,389(5):1115-4235
This paper studies the evolutionary ultimatum game on networks when agents have incomplete information about the strategies of their neighborhood agents. Our model assumes that agents may initially display low fairness behavior, and therefore, may have to learn and develop their own strategies in this unknown environment. The Genetic Algorithm Learning Classifier System (GALCS) is used in the model as the agent strategy learning rule. Aside from the Watts-Strogatz (WS) small-world network and its variations, the present paper also extends the spatial ultimatum game to the Barabási-Albert (BA) scale-free network. Simulation results show that the fairness level achieved is lower than in situations where agents have complete information about other agents’ strategies. The research results display that fairness behavior will always emerge regardless of the distribution of the initial strategies. If the strategies are randomly distributed on the network, then the long-term agent fairness levels achieved are very close given unchanged learning parameters. Neighborhood size also has little effect on the fairness level attained. The simulation results also imply that WS small-world and BA scale-free networks have different effects on the spatial ultimatum game. In ultimatum game on networks with incomplete information, the WS small-world network and its variations favor the emergence of fairness behavior slightly more than the BA network where agents are heterogeneously structured.  相似文献   

20.
Ju Xiang  Yi Tang 《Physica A》2008,387(13):3327-3334
Detecting communities in complex networks is of considerable importance for understanding both the structure and function of the networks. Here, we propose a class of improved algorithms for community detection, by combining the betweenness algorithm of Girvan and Newman with the edge weight defined by the edge-clustering coefficient. The improved algorithms are tested on some artificial and real-world networks, and the results show that they can detect communities of networks more effectively in both unweighted and weighted cases. In addition, the technique for improving the betweenness algorithm in this paper, thanks to its compatibility, can directly be applied to various detection algorithms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号