首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 273 毫秒
1.
The kinetics of alkaline hydrolysis of ethylp-nitrophenyl ethylphosphonate in the reverse micellar system sodium dodecyl sulfate—hexanol—water was studied. At high pH and low water content, the process occurs at the surface layer and can satisfactorily be described by the pseudo-phase model equation. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp 262–266, February, 2000.  相似文献   

2.
Physicochemical properties of aqueous solutions of binary mixtures of lignosulfonates and sodium dodecyl sulfate were studied. Introduction of sodium dodecyl sulfate into solutions of high-molecular-mass lignosulfonates at certain ratios causes macrophase separation of the systems with the formation of loose precipitates. A synergistic effect of a decrease in the surface tension is observed in the mixed solutions. This effect increases with increasing lignosulfonate molecular mass and temperature. The revealed relationships are caused by hydrophobic interactions of hydrocarbon radicals of sodium dodecyl sulfate with hydrophobic segments of lignosulfonate polymer chains with the formation of micellar associates. Aqueous solutions of binary mixtures of lignosulfonates (сLS ≥ 0.2 g dm–3) and sodium dodecyl sulfate (сDSNa ≥ 0.08 g dm–3) can be recommended for use as surfactant formulations for high-temperature autoclave leaching of polymetal ores.  相似文献   

3.
The du Noüy and oscillating droplet shape methods are employed to study the effects of the ionic strength and pH of a medium, as well as the addition of nonelectrolytes (lower alcohols and acetone), on the adsorption and surface rheological characteristics of aqueous solutions of humic acid salts (sodium humates) at the liquid-air interface. When added in concentrations at which the aggregation of humic substances is not yet observed, strong electrolytes (NaCl and HCl) decrease the equilibrium surface tension and increase the dilatational viscoelastic modulus of aqueous sodium humate solutions. The aggregation of humic substances enhances the surface tension and reduces the viscoelastic modulus of surface layers. Nonelectrolyte additives decrease the surface tension and dilatational modulus of aqueous humic acid salt solutions. The equilibrium surface tension of sodium humate-nonelectrolyte mixed solutions is described in terms of two different models, namely, a relatively exact model of polyelectrolyte-nonionic surfactant adsorption and a simple additive model. It is shown that the additive model may be used to predict the equilibrium surface tension for the mixtures of high- and low-molecular-mass surfactants.  相似文献   

4.
Measurements of the advancing contact angles for aqueous solutions of sodium dodecyl sulfate (SDDS) or sodium hexadecyl sulfonate (SHS) in mixtures with methanol, ethanol, or propanol on a quartz surface were carried out. On the basis of the obtained results and Young and Gibbs equations the critical surface tension of quartz wetting, the composition of the surface layer at the quartz-water interface, and the activity coefficients of the anionic surfactants and alcohols in this layer as well as the work of adhesion of aqueous solutions of anionic surfactant and alcohol mixtures to the quartz surface were determined. The analysis of the contact angle data showed that the wettability of quartz changed visibly only in the range of alcohol and anionic surfactant concentration at which these surface-active agents were present in the solution in the monomeric form. The analysis also showed that there was a linear dependence between the adhesion and the surface tension of aqueous solutions of anionic surfactant and alcohol mixtures. This dependence can be described by linear equations for which the constants depend on the anionic surfactant and alcohol concentrations. The slope of all linear dependence between adhesion and surface tension was positive. The critical surface tension of quartz wetting determined from this dependence by extrapolating the adhesion tension to the value equal to the surface tension (for contact angle equal zero) depends on the assumption whether the concentration of anionic surfactant or alcohol was constant. Its average value is equal to 29.95mN/m and it is considerably lower than the quartz surface tension. The positive slope of the adhesion-surface tension curves was explained by the possibility of the presence of liquid vapor film beyond the solution drop which settled on the quartz surface and the adsorption of surface-active agents at the quartz/monolayer water film-water interface. This conclusion was confirmed by the work of adhesion of aqueous solutions of anionic surfactants and short-chain alcohol mixtures to the quartz surface determined on the basis of the contact angle data and molar fraction of anionic surfactants and alcohols and their activity coefficient in the surface layer.  相似文献   

5.
The competitive binding of counterions to anionic dodecyl sulfate ions in aqueous solutions of cesium dodecyl sulfate (CsDS) and sodium dodecyl sulfate (SDS) mixtures, which significantly influences the critical micelle concentration (cmc) and surface (or interfacial) tension of surfactant solutions, was investigated. The cmc and degree of counterion binding were obtained through electrical conductivity measurements. The curve of cmc versus the mole fraction of CsDS in the surfactant mixture was simulated by Rubingh's equations, which enabled us to estimate the interaction parameter in micelles (W R) based on the regular solution approximation. The curve-fitting exhibited a slightly negative value (W R=−0.1), indicating that the mixing (SDS+CsDS) enhances micelle formation owing to a greater interaction between surfactant molecules and counterions than in pure systems (SDS). On going from SDS, SDS:CsDS(75:25), SDS:CsDS(50:50), SDS:CsDS(25:75) to CsDS, interfacial tension at the hexadecane/surfactant-solution interface showed a negative deviation from the mixing rule (interaction parameter in adsorbed film W A=−0.38), indicating the replacement of Na+ bound to anionic dodecyl sulfate by Cs+ ions owing to the stronger interaction between the Cs+ and the dodecyl sulfate ions. Droplet sizes of emulsion formed with hexadecane and aqueous dodecyl sulfate solutions were investigated using the light scattering spectrophotometer. The higher binding capacity of Cs+, having a smaller hydrated ionic size than Na+, also resulted in a negative deviation in emulsion droplet size in mixed systems. Received: 10 May 2000/Accepted: 11 August 2000  相似文献   

6.
Surface tension, micelle formation, surface adsorption, and solubilization of dimethylaminoazobenzene (DMAB) are studied in aqueous solutions of 3-alkoxyl-2-hydroxypropyl trimethylammonium chloride (alkoxyl = CnH2n+1O, n = 8, 12, 14, 16), of sodium dodecyl sulfonate, and of mixtures of these cationic surfactants and the anionic surfactant at 40°C. Synergistic effects on micelle formation, surface tension reduction, and solubilization enhancement of DMAB are observed in the cationic–anionic mixed surfactant systems. The experimental results are discussed in the light of the interactions between the two kinds of surfactant ions.  相似文献   

7.
The adsorption, micelle formation, and salting out of sodium dodecyl sulfate in the presence of sodium chloride were studied from the viewpoint of their mixed adsorption and aggregate formation. The surface tension of aqueous solutions of a sodium chloride–sodium dodecyl sulfate mixture was measured as a function of the total molality and composition of the mixture. Phase diagrams of adsorption and aggregate formation were obtained by applying thermodynamic equations to the surface tension. Judging from the phase diagrams, sodium chloride and sodium dodecyl sulfate are miscible in the adsorbed film at very large composition of sodium chloride and in the salted-out crystalline particle, while they are immiscible in the micelle. The miscibilities in the adsorbed film, micelle, and crystalline particle increase in the following order: particle > adsorbed film > micelle. The difference in miscibility among the oriented states was ascribed to the difference in geometry between the adsorbed film and micelle and to the interaction between bilayer surfaces in the particle.  相似文献   

8.
The physicochemical properties of quaternized poly(amidoamine) dendrimers (generation 4) with methyl or octyl groups and of their mixtures with sodium dodecyl sulfate (SDS) in aqueous solutions have been investigated using several techniques including surface tension, fluorescence of pyrene, and dynamic light scattering. In the single systems of the dendrimers, the dendrimer with octyl groups shows lower surface tension and lower micropolarity than the dendrimer with methyl groups. The hydrodynamic radii of two quaternized poly(amidoamine) dendrimers are considerably large, indicating the formation of aggregates. In the mixed systems of quaternized poly(amidoamine) dendrimers and SDS, the dendrimer with octyl groups-SDS mixed system shows very low surface tension and low micropolarity even in the presence of extremely low SDS concentration compared to those of the dendrimer with methyl groups-SDS mixed system. Maximum turbidity for both systems is observed at around the mixed molar ratio of dendrimer:SDS=1:1.5 where distinct changes have also been confirmed by surface tension, fluorescence of pyrene, and electrical conductivity measurements.  相似文献   

9.
The interaction in two mixtures of a nonionic surfactant Triton-X-100 (TX-100) and different ionic surfactants was investigated. The two mixtures were TX-100/sodium dodecyl sulfate (SDS) and TX-100/cetyltrimethylammonium bromide (CTAB) at molar fraction of TX-100, αTX-100 = 0.6. The surface properties of the surfactants, critical micelle concentration (CMC), effectiveness of surface tension reduction (γCMC), maximum surface excess concentration (Γmax), and minimum area per molecule at the air/solution interface (A min) were determined for both individual surfactants and their mixtures. The significant deviations from ideal behavior (attractive interactions) of the nonionic/ionic surfactant mixtures were also determined. Mixtures of both TX-100/SDS and TX-100/CTAB exhibited synergism in surface tension reduction efficiency and mixed micelle formation, but neither exhibited synergism in surface tension reduction effectiveness.  相似文献   

10.
The state of water adsorbed on active carbons and canal soot was studied using the “chemical potential—entropy—temperature” diagram. In the range of the relative pressures from 0.174 to 1, the state of adsorbed water is similar to the state of a stretched liquid. The molar volume, heat of evaporation, and surface tension of stretched water were calculated at different relative pressures. Near the spinodal, the molar volume of stretched water is 25% higher, and the surface tension is considerably lower compared to water. Translated fromIzvestiya Akademii Nauk, Seriya Khimicheskaya, No. 3, pp. 464–468, March, 1997.  相似文献   

11.
A cationic dendrimer-type tetrameric surfactant (C(8)qbG0) with four octyl chains and four ammonium groups was synthesized by the reaction of poly(amidoamine) dendrimers with generation of zero and glycidyldimethyloctylammonium bromide. The physicochemical properties of C(8)qbG0 and of their mixtures with sodium dodecyl sulfate (SDS) were characterized by investigating surface tension, electrical conductivity, fluorescence of pyrene, and dynamic light-scattering. The critical micelle concentration (cmc) of C(8)qbG0 was 13 mmol dm(-3) at the concentration of one terminal group and the surface tension at the cmc attained 34 mN m(-1). The occupied area of C(8)qbG0 was 1.94 nm(2) molecule(-1), indicating that the tetrameric dendrimers adsorb widely at the air/water interface. The fluorescence intensity ratio of the first-to-third band in the emission spectra of pyrene for C(8)qbG0 decreased from around the cmc obtained by the surface tension measurement. The hydrodynamic radius of C(8)qbG0 determined by dynamic light-scattering was about 1.3 nm. The addition of SDS to the aqueous solutions of C(8)qbG0 enhanced the surface activities; the mixtures exhibited lower cmc, lower surface tension, and higher solubilization of pyrene than SDS alone. It was found that the mixtures of C(8)qbG0 and SDS form large aggregates due to the interactions between their alkyl chains as well as hydrophilic groups.  相似文献   

12.
Miller KE  Skogerboe KJ  Synovec RE 《Talanta》1999,50(5):1045-1056
First, a novel technique for calibration of a dynamic surface tension detector (DSTD) is described. The DSTD measures the differential pressure as a function of time across the liquid-air interface of growing drops that repeatedly form and detach at the end of a capillary tip. The calibration technique utilizes the ratio of pressure signals acquired from the drop growth of two separate solutions, i.e. a standard solution and a corresponding mobile phase, such as water, both of which have a known surface tension. Once calibrated, the dynamic surface tension of an analyte is obtained from the ratio of the pressure signals from the analyte solution to that of the mobile phase solution. Thus, this calibration technique eliminates the need to optically image the radius of the expanding drop of liquid. Accurate dynamic surface tension determinations were achieved for aqueous sodium dodecyl sulfate (SDS) solutions over a concentration range of 0.5-5.4 mM. The measured surface tensions for these SDS solutions range from 70.3 to 46.8 dyne/cm and were in excellent agreement with the literature. A precision of 0.2 dyne/cm (1 S.D.) was routinely obtained. Second, the DSTD with this calibration technique was combined with flow injection analysis (FIA) for the study of model protein solutions and polymer solutions. The kinetic surface tension behavior of aqueous bovine serum albumin (BSA) solutions as a function of concentration and flow rate is presented. Evaluation of the dynamic surface tension data illustrates that a protein such as BSA initially exhibits kinetically-hindered surface tension lowering, i.e. a time dependence, as BSA interacts with the liquid-air interface of an expanding drop. FIA/DSTD is then shown to be an effective tool for the rapid study of kinetically-hindered surfactant mixtures. It was found that mixtures of SDS and the polymeric surfactant Brij(R)-35 (lauryl polyoxyethylene ether with an average molecular weight of 1200 g/mol) result in essentially an additive lowering of the surface tension. Mixtures of polyethylene glycol (PEG), with an average molecular weight of 1470 g/mol, and Brij(R)-35, however, result in a competitive (non-additive) surface tension with the Brij(R)-35 dominating the response.  相似文献   

13.
Maximum drop volumes (MDV) and the resultant surface tension values (sigma) of alpha-cyclodextrin (alpha-CD) + sodium dodecyl sulfate (SDS) aqueous mixtures have been determined over a broad concentration range of both solutes at 283.15, 293.15, 303.15, 313.15, and 323.15 K. Drops significantly larger than those of pure water (up to approximately 25% larger) were observed at low temperatures for solutions with [alpha-CD]/[SDS] concentration ratios, approximately > 2, producing unexpectedly high surface tension values. Our results indicate that at certain solute concentration ratios and temperatures, the drop volume method provides wrong values for equilibrium surface tensions. This is due to the high viscoelasticity of the surface film whose effect is important even though the injection rate of the drops was slow and the solutes molecular sizes are small.  相似文献   

14.
Summary. The sessile drop method has been used to measure density and surface tension for pure Ag, Bi, Sn, and their mixtures. For pure metals and Bi–Sn alloys negative temperature coefficients of surface tension have been obtained. In case of Ag–Bi and Ag–Sn alloys the temperature coefficients of surface tension take negative or positive values depending on composition. Experimental values of the surface tension for Ag–Bi, Ag–Sn, and Bi–Sn are compared with those computed from Butler’s model. A relatively good agreement is observed.  相似文献   

15.
The surface tensions of aqueous solutions of four mixtures (hydrochloric acid-glycine hydrochloride, glycine hydrochloride-glycine, glycine-sodium glycinate, and sodium glycinate-sodium hydroxide) were measured as a function of total molality and mole fraction. The measurements correspond to the change in surface tension with variation of pH. The contribution of glycine hydrochloride to the increments in surface tension is equivalent to that observed for the aqueous solution of glycine, while the contribution of sodium glycinate is much larger than that of glycine. The variations in surface tension on mixing in the surface region are discussed using comparisons with mixtures of simple salts.  相似文献   

16.
Neutron reflectivity and surface tension have been used to investigate the pH sensitivity of the adsorption of poly-L-lysine hydrobromide and sodium dodecyl sulfate mixtures at the air-solution interface. The surface tension variation with surfactant concentration is complex, and between the critical aggregation concentration and critical micellar concentration there is a marked increase in the surface tension. The neutron reflectivity results show that this is associated with a depletion of the surface of polypeptide/surfactant complexes. The variations in the adsorption and surface tension with pH are attributed to changes in the polypeptide conformation at the interface and in solution.  相似文献   

17.
Interaction of sodium dodecyl sulfate (SDS) with the cationic polyelectrolyte poly(ethyleneimine) (PEI) was investigated in this study. Turbidity measurements were performed in order to analyze the interaction and complex formation in bulk solution as a function of polymer concentration and pH. Surface tension measurements were made to investigate the properties of SDS/PEI/water mixtures at air/solution interface. Results revealed that SDS/PEI complexes form in solution depending on the surfactant and polymer concentration. A decrease was observed in surface tension values in the presence of SDS/PEI mixtures compared to the values of pure SDS solutions. Both solution and interfacial properties exhibited pH dependent behavior. A shift was seen in the critical micelle concentration of SDS solutions as a function of PEI concentration and solution pH. Monovalent and divalent salt additions showed some influence on the interfacial properties of SDS solutions in the presence of PEI.  相似文献   

18.
We report here the systematic study of the effect of concentration on the physical properties of aqueous solutions of the room-temperature ionic liquid [BMIM][BF4]. The measurements of density, ρ, refractive index △n, viscosity η, specific conductivity κ and surface tension, γ, were made over the whole concentration range. The equivalent conductance Λ m was calculated. The observed linear variations of density and refractive index with the molar concentration are established as those of an ideal solution. The surface tension varied most rapidly in the dilute region whereas the viscosity changed much more rapidly in the concentrated region. Two regions with different composition dependences were found after the analyses of the relationship between the conductivity and the concentration of [BMIM][BF4]. A proposed model for a structural change in the mixtures was described. The physical origin of the observed concentration dependence of these properties is discussed. The physical properties of the solutions vary with changes of association between anions and cations and the interaction between [BMIM][BF4] and water.  相似文献   

19.
This paper will present a simple method for critical micellar concentration (cmc) determination based on light scattering using a turbidimeter. The method does not require the optical clarification of the surfactant solution. The surfactant solutions were prepared from distilled water after boiling. Distinct cmc values were observed for polyoxyethylene mono n-dodecylether, sodium taurodeoxycholate and sodium dodecyl sulfate. The cmc values obtained using the turbidity method were compared with cmc values obtained by the surface tension method and with data given in the literature. Values obtained by our simple method have comparable accuracy with data obtained from more elaborate experiments.  相似文献   

20.
We have determined the concentration–depth profiles of sodium dodecyl sulfate (SDS) and cesium dodecyl sulfate (CDS) in their pure solutions, by which the surface structure of those solutions are characterized. With the identical bulk concentration, more Cs ions than sodium ions are present at the topmost layer and they penetrate deeper than sodium ions into the layer formed by the heads of the anions, shielding the electrostatic repulsion among those negatively charged anions more efficiently. The distributions of the charge at the surface of each studied solution were determined from those concentration–depth profiles of surfactant ions. The charge density varies more drastically in SDS solutions than in CDS solutions when their bulk concentrations are identical. These charge density profiles exhibit a visible and direct insight into the electric charge structure of the surface of ionic surfactant solutions. The experimental findings might be helpful to the investigations on the surface structures of aqueous solutions of ionic surfactants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号