首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 408 毫秒
1.
The spatial structure of the transition region between an insulator and an electrolyte solution was studied with x-ray scattering. The electron-density profile across the n-hexane/silica sol interface (solutions with 5, 7, and 12 nm colloidal particles) agrees with the theory of the electrical double layer and shows separation of positive and negative charges. The interface consists of three layers, i.e., a compact layer of Na(+), a loose monolayer of nanocolloidal particles as part of a thick diffuse layer, and a low-density layer sandwiched between them. Its structure is described by a model in which the potential gradient at the interface reflects the difference in the potentials of "image forces" between the cationic Na(+) and anionic nanoparticles and the specific adsorption of surface charge. The density of water in the large electric field (approximately 10(9)-10(10) Vm) of the transition region and the layering of silica in the diffuse layer is discussed.  相似文献   

2.
Adsorption of nanoparticles at the solid-liquid interface   总被引:1,自引:0,他引:1  
The adsorption of differently charged nanoparticles at liquid-solid interfaces was investigated by in situ X-ray reflectivity measurements. The layer formation of positively charged maghemite (γ-Fe(2)O(3)) nanoparticles at the aqueous solution-SiO(2) interface was observed while negatively charged gold nanoparticles show no adsorption at this interface. Thus, the electrostatic interaction between the particles and the charged surface was determined as the driving force for the adsorption process. The data analysis shows that a logarithmic particle size distribution describes the density profile of the thin adsorbed maghemite layer. The size distribution in the nanoparticle solution determined by small angle X-ray scattering shows an average particle size which is similar to that found for the adsorbed film. The formed magehemite film exhibits a rather high stability.  相似文献   

3.
The structure of the interface generated by a spread layer of beta-casein on an aqueous colloidal poly(silicic) acid subphase is described. The results are compared with data for the protein alone spread at the air/water interface and the silicate solution. Films develop at the air-solution interface and a strong pH dependence of the interaction causing this is demonstrated. Reflectometry with X-rays and neutrons was used to probe the interaction as a function of subphase pH and film compression. Film thickness, tau/A, scattering length density, rho/A(-2), water volume fraction, phi(w), and surface coverage, Gamma/mg m(-2), were used to quantify the interfacial structure. Where possible, the X-ray and neutron data sets were co-refined enabling phi(w) to be evaluated without assumption regarding the protein density. At pH 5-7, strong protein-silicate interaction occurred, the interface comprising three regions: a discrete protein upper layer on top of a 15 +/- 2 A layer of silicated material followed by a diffuse layer that extended into the subphase.  相似文献   

4.
We report observations of the changes in the surface structure of lysozyme adsorbed at the air-water interface produced by the chemical denaturant guanidinium chloride. A primary result is the durability of the adsorbed surface layer to denaturation, as compared to the molecule in the bulk solution. Data on the surface film were obtained from X-ray and neutron reflectivity measurements and modeled simultaneously. The behavior of lysozyme in G.HCl solutions was determined by small-angle X-ray scattering. For the air-water interface, determination of the adsorbed protein layer dimensions shows that at low to moderate denaturant concentrations (up to 2 mol L(-1)), there is no significant distortion of the protein's tertiary structure at the interface, as changes in the orientation of the protein are sufficient to model data. At higher denaturant concentrations, time-dependent multilayer formation occurred, indicating molecular aggregation at the surface. Methodologies to predict the protein orientation at the interface, based on amino acid residues' surface affinities and charge, were critiqued and validated against our experimental data.  相似文献   

5.
We have determined the structural conformations of human lactoferrin adsorbed at the air/water interface by neutron reflectivity (NR) and its solution structure by small angle neutron scattering (SANS). The neutron reflectivity measurements revealed a strong structural unfolding of the molecule when adsorbed at the interface from a pH 7 phosphate buffer solution (PBS with a total ionic strength at 4.5 mM) over a wide concentration range. Two distinct regions, a top dense layer of 15-20 angstroms on the air side and a bottom diffuse layer of some 50 angstroms into the aqueous subphase, characterized the unfolded interfacial layer. At a concentration around 1 g dm(-3), close to the physiological concentration of lactoferrin in biological fluids, the adsorbed amount was 5.5 x 10(-8) mol m(-2) in the absence of NaCl, but the addition of 0.3 M NaCl reduced protein adsorption to 3.5 x 10(-8) mol m(-2). Although the polypeptide distributions at the interface remained similar, quantitative analysis showed that the addition of NaCl reduced the layer thickness. Parallel measurements of lactoferrin adsorption in D2O instead of null reflecting water confirmed the unfolded structure at the interface. Furthermore, the D2O data indicated that the polypeptide in the top layer was predominantly protruded out of water, consistent with it being hydrophobic. In contrast, the scattering intensity profiles from SANS were well described by a cylindrical model with a diameter of 47 angstroms and a length of 105 angstroms in the presence of 0.3 M NaCl, indicating a retention of the globular framework in the bulk solution. In the absence of NaCl but with the same amount of phosphate buffer, the length of the cylinder increased to some 190 angstroms and the diameter remained constant. The length increase is indicative of changes in distance and orientation between the bilobal monomers due to the change in charge interactions. The results thus demonstrate that the surface structural unfolding was caused by the exposure of the protein molecule to the unsymmetrical energetic balance following surface adsorption.  相似文献   

6.
The adsorption behavior of two examples of a weakly basic diblock copolymer, poly(2-(dimethylamino)ethyl methacrylate)-block-poly(2-(diethylamino)ethyl methacrylate) (PDMA-PDEA), at the silica/aqueous solution interface has been investigated using a quartz crystal microbalance with dissipation monitoring and an optical reflectometer. Dynamic and static light scattering measurements have also been carried out to assess aqueous solution properties of such pH-responsive copolymers. In alkaline solution, core-shell micelles are formed above the critical micelle concentration (cmc) by both copolymers, whereas the chains are molecularly dissolved (as unimers) at all concentrations in acidic solution. As a result, the adsorption behavior of PDMA-PDEA diblock copolymers on silica is strongly dependent on both the copolymer concentration and the solution pH. Below the cmc at pH 9, the cationic PDMA-PDEA copolymers adsorb as unimers and the conformation of the adsorbed polymer is essentially flat. At concentrations just above the cmc, the initial adsorption of copolymer onto the silica is dominated by the unimers due to their faster diffusion compared to the much larger micelles. Rearrangement of the adsorbed unimers and/or their subsequent displacement by micelles from solution is then observed during an equilibration period, and the final adsorbed mass is greater than that observed below the cmc. At concentrations well above the cmc, the much higher proportion of micelles in solution facilitates more effective competition for the surface at all stages of the adsorption process and no replacement of initially adsorbed unimers by micelles is evident. However, the adsorbed layer undergoes gradual rearrangement after initial adsorption. This relaxation is believed to result from a combination of further copolymer adsorption and swelling of the adsorbed layer.  相似文献   

7.
The desorption and subsequent pH-responsive behavior of selectively quaternized poly(2-(dimethylamino)ethyl methacrylate)-block-poly(2-(diethylamino)ethyl methacrylate) (PDMA-PDEA) films at the silica/aqueous solution interface has been characterized. The copolymer films were prepared at pH 9, where micelle-like surface aggregates are spontaneously formed on silica. The subsequent rinse with a copolymer-free electrolyte solution adjusted to pH 9 causes partial desorption of the weakly or non-quaternized copolymers, but negligible desorption for the highly quaternized copolymers. Further rinsing with a pH 4 electrolyte solution results in additional desorption and extension (swelling) of the remaining adsorbed copolymer film normal to the interface. This pH-responsive behavior is reversible for two pH cycles (9-4-9-4) as monitored by both quartz crystal microbalance with dissipation monitoring (QCM-D) and also zeta potential measurements. The magnitude of the pH-responsive behavior depends on the mean degree of quaternization of the PDMA block. Moreover, a combination of contact angle data, zeta potential measurements and in situ atomic force microscopy (AFM) studies indicates that the pH-responsive behavior is influenced not only by the number of cationic binding sites on the adsorbed copolymer chains but also by the adsorbed layer structure.  相似文献   

8.
9.
Conformational orientations of a mouse monoclonal antibody to the beta unit of human chorionic gonadotrophin (anti-beta-hCG) at the hydrophilic silicon oxide/water interface were investigated using atomic force microscopy (AFM) and neutron reflectivity (NR). The surface structural characterization was conducted with the antibody concentration in solution ranging from 2 to 50 mg.L(-1) with the ionic strength kept at 20 mM and pH = 7.0. It was found that the antibody adopted a predominantly "flat-on" orientation, with the Fc and two Fab fragments lying flat on the surface. The AFM measurement revealed a thickness of 30-33 A of the layer formed in contact with 2 mg.L(-1) antibody in water, but, interestingly, the flat-on antibody molecules formed small nonuniform clusters equivalent to 2-15 antibody molecules. Parallel AFM scanning in air revealed even larger surface clusters, suggesting that surface drying induced further aggregation. The AFM study thus demonstrated that the interaction between protein and the hydrophilic surface is weak and indicated that surface aggregation can be driven by the attraction between neighboring protein molecules. NR measurements at the solid/water interface confirmed the flat-on layer orientation of adsorbed molecules over the entire concentration range studied. Thus, at 2 mg.L(-1), the adsorbed antibody layer was well represented by a uniform layer with a thickness of 40 A. This value is thicker than the 30-33 A observed from AFM, suggesting possible layer compression caused by the tip tapping. An increase in the antibody concentration to 10 mg.L(-1) led to increasing surface adsorption. The corresponding layer structure was well represented by a three-layer model consisting of an inner sublayer of 10 A, a middle sublayer of 30 A, and an outer sublayer of 25 A, with the protein volume fractions in each sublayer being 0.22, 0.42, and 0.10, respectively. The structural transition can be interpreted as a twisting and tilting of segments of the adsorbed molecules, driven by an electrostatic repulsion between them that increases with the surface packing density. Hindrance of antigen access to antibody binding sites, resulting from the change in surface packing, can account for the decrease in antigen binding capacity (AgBC) with increasing surface density of the antibody that is observed.  相似文献   

10.
Upon addition of silica to aqueous solutions of poly(ethylene oxide)-b-poly(epsilon-caprolactone) copolymers (PEO-b-PCL) and sodium dodecyl sulfate (SDS), adsorption of the solutes occurs at the silica-water interface. The amount of the adsorbed constituents has been measured by the total concentration depletion method. Small-angle neutron scattering experiments (SANS) have been carried out to investigate the structure of the adsorbed layer. Although SDS is not spontaneously adsorbed onto hydrophilic silica, adsorption is observed in the presence of PEO-b-PCL diblocks, in relation to the relative concentration of the two compounds. Conversely, SDS has a depressive effect on the adsorption of the copolymer, whose structure at the interface is modified. Copolymer desorption is however never complete at high SDS content. These observations have been rationalized by the associative behavior of PEO-b-PCL and SDS in water.  相似文献   

11.
A quartz crystal microbalance with dissipation (QCM-D) has been used to determine the adsorption rate of ampicillin-resistant linear and supercoiled plasmid DNA onto a silica surface coated with natural organic matter (NOM). The structure of the resulting adsorbed DNA layer was determined by analyzing the viscoelastic properties of the adsorbed DNA layers as they formed and were then exposed to solutions of different ionic composition. The QCM-D data were complemented by dynamic light scattering measurements of diffusion coefficients of the DNA molecules as a function of solution ionic composition. The obtained results suggest that electrostatic interactions control the adsorption and structural changes of the adsorbed plasmid DNA on the NOM-coated silica surface. The adsorption of DNA molecules to the NOM layer took place at moderately high monovalent (sodium) electrolyte concentrations. A sharp decrease in solution ionic strength did not result in the release of the adsorbed DNA, indicating that DNA adsorption on the NOM-coated silica surface is irreversible under the studied solution conditions. However, the decrease in electrolyte concentration influenced the structure of the adsorbed layer, causing the adsorbed DNA to adopt a less compact conformation. The linear and supercoiled DNA had similar adsorption rates, but the linear DNA formed a thicker and less compact adsorbed layer than the supercoiled DNA.  相似文献   

12.
The nanostructure of a spread monolayer of diblock copolymers of poly(hydrogenated isoprene) and poly(styrenesulfonate) at the air/water interface were studied by in situ X-ray reflectivity as a function of the brush density and salt concentration. When the monolayer was compressed beyond the "critical brush density", its nanostructure changed from a flat, adsorbed "carpet" layer to a "carpet + brush" structure. The critical brush density was found to be about 0.12 nm-2, independent the brush length and salt concentration under a low-salt condition. The brush formation behavior was considered to be controlled by an electrostatic interaction between polyelectrolyte chains rather than by a steric hindrance. This might be because the distance between the chains at the critical point is rather long and also because of the effect of the salt on the critical brush density. The critical brush density increased at higher added salt concentration beyond 1 M. As a result, we found a new structure transition behavior of the polymer brushes between carpet-only and carpet + brush structures, which was induced by salt addition. Finally, we succeeded in the controlled release of salt ions from the salted brush layer by changing the brush density by compression of the monolayer.  相似文献   

13.
TEOS-MTES基SiO2溶胶微结构的SAXS研究   总被引:3,自引:0,他引:3  
正硅酸乙酯(TEOS)为前驱体,在碱性条件下制备含有无定形SiO2颗粒的溶胶,以甲基三乙氧基硅烷(MTES)在酸性条件下获得聚甲基硅氧链,二者混合后应用同步辐射X射线进行混合溶胶的SAXS散射强度测定,计算了溶胶的平均回转半径、平均粒径、两相界面层厚度、散射体体积分数、两相间比表面积等参数,辅以光子相关光谱法(PCS)和透射电子显微镜(TEM)观测溶胶粒度,证实SiO2颗粒被MTES混合物连接成族团.实验发现所测混合溶胶样品均表现出对Porod定理的负偏离,说明溶胶中颗粒与溶剂之间存在很明显的两相间界面层.  相似文献   

14.
The structure of water at aqueous interfaces is of the utmost importance in biology, chemistry, and geology. We use neutron reflectivity and quartz crystal microbalance to probe an interface between hydrophilic quartz and bulk liquid solutions of H2O/D2O mixtures. We find that near the interface the neutron scattering length density is larger than in the bulk solution and there is an excess adsorbed mass. We interpret this as showing that there is a region adjacent to the quartz that is enriched in D2O and extends 5-10 nm into the solution. This suggests caution when interpreting results where D2O is substituted for H2O in aqueous interfacial chemistry.  相似文献   

15.
Heparin was modified with adipic dihydrazide and covalently linked to surface-activated silica wafers. X-ray photoelectron spectroscopy was used at each stage of derivatization and showed that successful immobilization had taken place. Surfaces were imaged with atomic force microscopy to determine the uniformity of the heparin layer as well as its thickness. In situ ellipsometry was used to estimate layer thickness as well, and to study protein concentration and adsorption time effects on the adsorption and elution kinetics exhibited by human plasma fibrinogen. The adsorbed amount of fibrinogen increased with time and concentration on each type of surface. Under all experimental conditions, fibrinogen adsorbed at a lower rate and to a lower extent on heparinized as compared to unheparinized silica. In addition, buffer elution experiments showed that fibrinogen was less tightly bound to heparinized silica. In order to examine behavior relative to fibrinogen mobility at these interfaces, the sequential adsorption of fibrinogen was recorded. The difference in adsorption rates between the first and second adsorption cycles, evaluated at identical mass density, indicated that post-adsorptive molecular rearrangements had taken place. In general, higher solution concentration and longer adsorption time in the first adsorption step led to more rearrangement, and these history dependent effects were more pronounced on the heparinized silica. These rearrangements are suggested to involve clustering of adsorbed fibrinogen, in this way increasing the amount of unoccupied area at the interface. These rearrangements were presumably facilitated on the heparinized silica by enhanced lateral mobility of fibrinogen at this negatively charged, highly hydrophilic interface.  相似文献   

16.
The interfacial structure between the muscovite (001) surface and aqueous solutions containing monovalent cations (3 × 10(-3) m Li(+), Na(+), H(3)O(+), K(+), Rb(+), or Cs(+), or 3 × 10(-2) m Li(+) or Na(+)) was measured using in situ specular X-ray reflectivity. The element-specific distribution of Rb(+) was also obtained with resonant anomalous X-ray reflectivity. The results demonstrate complex interdependencies among adsorbed cation coverage and speciation, interfacial hydration structure, and muscovite surface relaxation. Electron-density profiles of the solution near the surface varied systematically and distinctly with each adsorbed cation. Observations include a broad profile for H(3)O(+), a more structured profile for Li(+) and Na(+), and increasing electron density near the surface because of the inner-sphere adsorption of K(+), Rb(+), and Cs(+) at 1.91 ± 0.12, 1.97 ± 0.01, and 2.26 ± 0.01 ?, respectively. Estimated inner-sphere coverages increased from ~0.6 to 0.78 ± 0.01 to ~0.9 per unit cell area with decreasing cation hydration strength for K(+), Rb(+), and Cs(+), respectively. Between 7 and 12% of the Rb(+) coverage occurred as an outer-sphere species. Systematic trends in the vertical displacement of the muscovite lattice were observed within ~40 ? of the surface. These include a <0.1 ? shift of the interlayer K(+) toward the interface that decays into the crystal and an expansion of the tetrahedral-octahedral-tetrahedral layers except for the top layer in contact with solution. The distortion of the top tetrahedral sheet depends on the adsorbed cation, ranging from an expansion (by ~0.05 ? vertically) in 3 × 10(-3)m H(3)O(+) to a contraction (by ~0.1 ?) in 3 × 10(-3) m Cs(+). The tetrahedral tilting angle in the top sheet increases by 1 to 4° in 3 × 10(-3) m Li(+) or Na(+), which is similar to that in deionized water where the adsorbed cation coverages are insufficient for full charge compensation.  相似文献   

17.
The surface and solution behavior of the mixed dialkyl chain cationic and nonionic surfactant mixture of dihexadecyldimethylammonium bromide, DHDAB, and hexaethylene monododecyl ether, C12E6, has been investigated, using primarily the scattering techniques of small-angle neutron scattering and neutron reflectivity. Within the time scale of the measurements, the adsorption of the pure component C12E6 at the air-solution interface shows no time dependence. In contrast, the adsorption of the DHDAB/C12E6 mixture and pure DHDAB has a pronounced time dependence. The characteristic time for adsorption varies with surfactant concentration, composition, and temperature. It is approximately 2-3 h for the DHDAB/C12E6 mixture, dependent upon concentration and composition, and approximately 50 min for DHDAB. At the air-solution interface, the equilibrium composition of the adsorbed layer shows a marked departure from ideal mixing, which is dependent upon both the solution concentration and the concentration of added electrolyte. In contrast, the composition of the aggregates in the bulk solution that are in equilibrium with the surface is close to ideal mixing, as expected for solution concentrations well in excess of the critical micellar concentration. The structure of the mixed adsorbed layer has been measured and compared with the structure of the equivalent pure surfactant monolayer, and no substantial changes in structure or conformation are observed. The extreme departure from ideal mixing in the adsorption behavior of the DHDAB/C12E6 mixture is discussed in the context of the structure of the adsorbed layer, changes in the underlying solution structures, and the failure of regular solution theory to predict such behavior.  相似文献   

18.
The symmetry of the surface of an electrolyte solution can be anisotropic, regardless of the bulk's isotropic symmetry, because of spatial correlations between adsorbed ions. The author used x-ray grazing-incidence diffraction to measure the spatial correlations between sodium ions in "classical one-component plasma" adsorbed with Bjerrum's density at the surface of a monodispersed 22 nm particle colloidal silica solution stabilized by NaOH with a total bulk concentration approximately 0.05 mol/L. The authors findings show that the surface compact layer is in a two-dimensional crystalline state (symmetry p2), with four sodium ions forming the unit cell and a approximately 30 A translational correlation length between the ions.  相似文献   

19.
The interaction of the globular protein lysozyme with silica nanoparticles of diameter 20 nm was studied in a pH range between the isoelectric points (IEPs) of silica and the protein (pH 3-11). The adsorption affinity and capacity of lysozyme on the silica particles is increasing progressively with pH, and the adsorbed protein induces bridging aggregation of the silica particles. Structural properties of the aggregates were studied as a function of pH at a fixed protein-to-silica concentration ratio which corresponds to a surface concentration of protein well below a complete monolayer in the complete-binding regime at pH > 6. Sedimentation studies indicate the presence of compact aggregates at pH 4-6 and a loose flocculated network at pH 7-9, followed by a sharp decrease of aggregate size near the IEP of lysozyme. The structure of the bridged silica aggregates was studied by cryo-transmission electron microscopy (cryo-TEM) and small-angle X-ray scattering. The structure factor S(q) derived from the scattering profiles displays characteristic features of particles interacting by a short-range attractive potential and can be represented by the square-well Percus-Yevick potential model, with a potential depth not exceeding 3k(B)T.  相似文献   

20.
The adsorption of a zwitterionic diblock copolymer, poly(2-(diethylamino)ethyl methacrylate)-block-poly(methacrylic acid) (PDEA59-PMAA50), at the silica/aqueous solution interface has been characterised as a function of pH. In acidic solution, this copolymer forms core-shell micelles with the neutral PMAA chains being located in the hydrophobic cores and the protonated PDEA chains forming the cationic micelle coronas. In alkaline solution, the copolymer forms the analogous inverted micelles with anionic PMAA coronas and hydrophobic PDEA cores. The morphology of the adsorbed layer was observed in situ using soft-contact atomic force microscopy (AFM): this technique suggests the formation of a thin adsorbed layer at pH 4 due to the adsorption of individual copolymer chains (unimers) rather than micelle aggregates. This is supported by the remarkably low dissipation values and the relatively low degrees of hydration for the adsorbed layers, as estimated using a combination of quartz crystal microbalance with dissipation monitoring (QCM-D) and optical reflectometry (OR). In alkaline solution, analysis of the adsorption data suggests a conformation for the adsorbed copolymers where one block projects normal to the solid/liquid interface; this layer consists of a hydrophobic PDEA anchor block adsorbed on the silica surface and an anionic PMAA buoy block extending into the solution phase. Tapping mode AFM studies were also carried out on the silica surfaces after removal from the copolymer solutions and subsequent drying. Interestingly, in these cases micelle-like surface aggregates were observed from both acidic and alkaline solutions. The lateral dimension of the aggregates seen is consistent with the corresponding hydrodynamic diameter of the copolymer micelles in bulk solution. The combination of the in situ and ex situ AFM data provides evidence that, for this copolymer, micelle aggregates are only seen in the ex situ dry state as a result of the substrate withdrawal and drying process. It remains unclear whether these aggregates are caused by micelle deposition at the surface during the substrate withdrawal from the solution or as a result of unimer rearrangements at the drying front as the liquid recedes from the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号