首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In view of the growing interest for the synthesis of metal complexes and their interaction with DNA, we have synthesized and characterized two complexes containing ruthenium as metal center. The complexes are of the type [Ru(dppz)L4](ClO4)2 where L are biologically important ligands such as pyrazole and dimethylpyrazole. The characterization of these complexes is done by 1H NMR, 13C NMR, elemental analysis and mass spectroscopy. The interaction of these complexes with CT DNA was monitored and binding constants were determined using absorption and fluorescence spectroscopy. The mode of binding was found to be intercalative for both complexes and was determined using hydrodynamic viscosity studies. The complexes were further studied for photocleavage studies with supercoiled plasmid pBR322 DNA.  相似文献   

2.
We here report our studies on the conjugation of photoreactive Ru(2+) complex to oligonucleotides (ODNs), which give a stable duplex with the complementary target DNA strand. These functionalized DNA duplexes bearing photoreactive Ru(2+) complex can be specifically photolyzed to give the reactive aqua derivative, [Ru(tpy)(dppz)(H(2)O)](2+)-ODN (tpy = 2,2':6',2' '-terpyridine; dppz = dipyrido[3,2-a:2',3'-c]phenazine), in situ, which successfully cross-links to give photoproduct(s) in the duplex form with the target complementary DNA strand. Thus, the stable precursor of the aquaruthenium complex, the monofunctional polypyridyl ruthenium complex [Ru(tpy)(dppz)(CH(3)CN)](2+), has been site-specifically tethered to ODN, for the first time, by both solid-phase synthesis and postsynthetic modifications. (i) In the first approach, pure 3'-[Ru(tpy)(dppz)(CH(3)CN)](2+)-ODN conjugate has been obtained in 42% overall yield (from the monomer blocks) by the automated solid-phase synthesis on a support labeled with [Ru(tpy)(dppz)Cl](+) complex with subsequent liberation of the crude conjugate from the support under mild conditions and displacement of the Cl(-) ligand by acetonitrile in the coordination sphere of the Ru(2+) label. (ii) In the second approach, the single-modified (3'- or 5'- or middle-modified) or 3',5'-bis-modified Ru(2+)-ODN conjugates were prepared in 28-50% yield by an amide bond formation between an active ester of the metal complex and the ODNs conjugated with an amino linker. The pure conjugates were characterized unambiguously by ultraviolet-visible (UV-vis) absorption spectroscopy, enzymatic digestion followed by HPLC quantitation, polyacrylamide gel electrophoresis (PAGE), and mass spectrometry (MALDI-TOF as well as by ESI). [Ru(tpy)(dppz)(CH(3)CN)](2+)-ODNs form highly stabilized ODN.DNA duplexes compared to the unlabeled counterpart (DeltaT(m) varies from 8.4 to 23.6 degrees C) as a result of intercalation of the dppz moiety; they undergo clean and selective photodissociation of the CH(3)CN ligand to give the corresponding aqua complex, [Ru(tpy)(dppz)(H(2)O)](2+)-ODNs (in the aqueous medium), which is evidenced from the change of their UV-vis absorption properties and the detection of the naked Ru(2+)-ODN ions generated in the course of the matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometric analysis. Thus, when [Ru(tpy)(dppz)(CH(3)CN)](2+)-ODN conjugate was hybridized to the complementary guanine (G)-rich target strand (T), and photolyzed in a buffer (pH 6.8), the corresponding aqua complex formed in situ immediately reacted with the G residue of the opposite strand, giving the cross-linked product. The highest yield (34%) of the photo cross-linked product obtained was with the ODN carrying two reactive Ru(2+) centers at both 3'- and 5'-ends. For ODNs carrying only one Ru(2+) complex, the yield of the cross-linked adduct in the corresponding duplex is found to decrease in the following order: 3'-Ru(2+)-ODN (22%) > 5'-Ru(2+)-ODN (9%) > middle-Ru(2+)-ODN (7%). It was also found that the photo cross-coupling efficiency of the tethered Ru(2+) complex with the target T strand decreased as the stabilization of the resulting duplex increased: 3'-Ru(2+)-ODN (VI.T) (DeltaT(m)(b) = 7 degrees C) < 5'-Ru(2+)-ODN (V.T) (DeltaT(m)(b) = 16 degrees C) < middle-Ru(2+)-ODN (VII.T) (DeltaT(m)(b) = 24.3 degrees C, Table 2). This shows that, with the rigidly packed structure, as in the duplex with middle-Ru(2+)-ODN, the metal center flexibility is considerably reduced, and consequently the accessibility of target G residue by the aquaruthunium moiety becomes severely restricted, which results in a poor yield in the cross-coupling reaction. The cross-linked product was characterized by PAGE, followed by MALDI-TOF MS.  相似文献   

3.
The quenching of the luminescence of [Ru(phen)(2)dppz](2+) by structural homologue [Ru(phendione)(2)dppz](2+), when both complexes are bound to DNA, has been studied for all four combinations of Delta and Lambda enantiomers. Flow linear dichroism spectroscopy (LD) indicates similar binding geometries for all the four compounds, with the dppz ligand fully intercalated between the DNA base pairs. A difference in the LD spectrum observed for the lowest-energy MLCT transition suggests that a transition, potentially related to the final localization of the excited electron to the dppz ligand in [Ru(phen)(2)dppz](2+), is overlaid by an orthogonally polarized transition in [Ru(phendione)(2)dppz](2+). This would be consistent with a low-lying LUMO of the phendione moiety of [Ru(phendione)(2)dppz](2+) that can accept the excited electron from [Ru(phen)(2)dppz](2+), thereby quenching the emission of the latter. The lifetime of excited Delta-[Ru(phen)(2)dppz](2+) is decreased moderately, from 664 to 427 ns, when bound simultaneously with the phendione complex to DNA. The 108 ns lifetime of opposite enantiomer, Lambda-[Ru(phen)(2)dppz](2+), is only shortened to 94 ns. These results are consistent with an average rate constant for electron transfer of approximately 1.10(6) s(-1) between the phenanthroline- and phendione-ruthenium complexes. At binding ratios close to saturation of DNA, the total emission of the two enantiomers is lowered equally much, but for the Lambda enantiomer, this is not paralleled by a decrease in luminescence lifetime. A binding isotherm simulation based on a generalized McGhee-von Hippel approach shows that the Delta enantiomer binds approximately 3 times stronger to DNA both for [Ru(phendione)(2)dppz](2+) and [Ru(phen)(2)dppz](2+). This explains the similar decrease in total emission, without the parallel decrease in lifetime for the Lambda enantiomer. The simulation also does not indicate any significant binding cooperativity, in contrast to the case when Delta-[Rh(phi)(2)bipy](3+) is used as quencher. The very slow electron transfer from [Ru(phen)(2)dppz](2+) to [Ru(phendione)(2)dppz](2+), compared to the case when [Rh(phi)(2)phen](3+) is the acceptor, can be explained by a much smaller driving free-energy difference.  相似文献   

4.
The structures and related properties of the complex [Ru(phen)2(6-OH-dppz)]2+ (phen = 1,10-phenanthroline; dppz = dipyrido [3,2-a:2',3'-c]phenazine) in the ground state (S0), the first singlet excited state (S1), and the first triplet excited state (T1) have been studied using density functional theory (DFT), time-dependent (TD) DFT, Hartree-Fock (HF), and configuration interaction singles (CIS) methods. Three electronic absorption-spectral bands (1MLCT, 1LL, and 1LL) lying in the range of 250-550 nm in vacuo and in aqueous solution were theoretically calculated, simulated, and assigned with TDDFT method. In particular, the theoretical results show the following: (1) The positive charges of central Ru atom in the excited states (S1 and T1) are greatly increased relative to those in the ground state (S0), and thus the Ru atom in the excited states can be regarded as Ru(III). (2) The positive charges on the main ligand (6-OH-dppz) in the excited states are considerably reduced, and thus the interaction between the main ligand (intercalative ligand) and DNA base pairs is considerably weakened. (3) The geometric structures in excited states are also distorted, resulting in obvious increase in the coordination bond length. It is advantageous to the complex forming a high oxidizing center (i.e., Ru(III) ion). On the basis of these results, a theoretical explanation on photoinduced oxidation reduction mechanism of DNA photocleavage by [Ru(phen)2(6-OH-dppz)](2+) has been presented.  相似文献   

5.
Combined Car-Parrinello and time-dependent DFT calculations performed on [Ru(phen)2dppz]2+ intercalated into an adenine-thymine tetramer reveal a remarkable influence of the base pairs in determining the electronic structure and the character of the excited states involved in the absorption and emission processes.  相似文献   

6.
The UV/Visible absorption properties of a polypyridyl ruthenium complex upon intercalation on DNA are studied at the mixed quantum mechanics molecular mechanics level of theory. Vertical excitation transitions are computed by time dependent density functional theory. Particular emphasis is put on the different levels at which the macromolecular environment is treated, and in particular on the analysis of the effect of mechanical, electrostatic and polarizable embedding. We show that with the highest level of theory the experimental absorption wavelengths are reproduced with a difference of only 2 or 3 nm for the low energy bands. The systematic analysis of the individual vertical transitions allows us to get much more insights into the role played by the environment, in particular, in metal to ligand and intra ligand charge transfer transitions that can lead to the production of DNA oxidative lesions exploitable in phototherapy.  相似文献   

7.
A new polypyridyl ligand tbtc (tbtc=4,5,9,14-tetraaza-benzo[b]triphenylene-11-carboxylic acid methyl ester) and its complexes [Ru(phen)2(tbtc)]2+ (1) (phen=1,10-phenanthroline) and [Ru(2,9-dmp)2(tbtc)]2+ (2) (2,9-dmp=2,9-dimethyl-1,10-phenanthroline) were synthesized and characterized by element analysis, MS, and 1H NMR. The DNA binding properties of both complexes to calf thymus DNA (CT-DNA) were investigated by different spectrophotometric methods and viscosity measurements. The results suggest that both complexes bind to DNA via an intercalative mode, and the DNA binding affinity of complex 1 is much greater than that of complex 2. This difference in binding affinity probably was caused by the different ancillary ligands. Also, when irradiated at 365 nm, complex 1 was found to be a more-effective DNA-cleaving agent than complex 2.  相似文献   

8.
Ru(bipy)_2(dppz)~(2+)与DNA相互作用的光谱研究   总被引:4,自引:1,他引:4  
利用荧光和紫外可见吸收光谱研究了 Ru( bipy) 2 ( dppz) 2 +与 DNA之间的插入键合作用。结果表明 ,Ru( bipy) 2 ( dppz) 2 +是通过 dppz配体插入到 DNA的双螺旋结构中。而且 ,一定浓度的 Fe( CN) 4 - 6 和 Na Cl对 Ru( bipy) 2 ( dppz) 2 +- DNA复合物的荧光无猝灭作用 ,这一结果也证实了 Ru( bipy) 2 ( dppz) 2 +和 DNA之间的插入键合作用  相似文献   

9.
熊振海  杨频 《化学研究与应用》2002,14(6):649-652,F002
本文通过在ESFF(Extensible Systematic Force Field)力场下对其作用中的体系势能进行分子力学计算,分析了手性金属配合物Λ-及Δ-[Ru(phen)2dppz]^n 对错配DNA d(CCGAATGAGG)2的识别机理,并在分子水平上对其做了详细解释。  相似文献   

10.
The neutral complex [Ru(2)(acac)(4)(bptz)] (I) has been prepared by the reaction of Ru(acac)(2)(CH(3)CN)(2) with bptz (bptz = 3,6-bis(2-pyridyl)-1,2,4,5-tetrazine) in acetone. The diruthenium(II,II) complex (I) is green and exhibits an intense metal-ligand charge-transfer band at 700 nm. Complex I is diamagnetic and has been characterized by NMR, optical spectroscopy, IR, and single-crystal X-ray diffraction. Crystal structure data for I are as follows: triclinic, P1, a = 11.709(2) A, b = 13.487(3) A, c = 15.151(3) A, alpha = 65.701(14) degrees, beta = 70.610(14) degrees, gamma = 75.50(2) degrees, V = 2038.8(6) A(3), Z = 2, R = 0.0610, for 4397 reflections with F(o) > 4sigmaF(o). Complex I shows reversible Ru(2)(II,II)-Ru(2)(II,III) and Ru(2)(II,III)-Ru(2)(III,III) couples at 0.17 and 0.97 V, respectively; the 800 mV separation indicates considerable stabilization of the mixed-valence species (K(com) > 10(13)). The diruthenium(II,III) complex, [Ru(2)(acac)(4)(bptz)](PF(6)) (II) is prepared quantitatively by one-electron oxidation of I with cerium(IV) ammonium nitrate in methanol followed by precipitation with NH(4)PF(6). Complex II is blue and shows an intense MLCT band at 575 nm and a weak band at 1220 nm in CHCl(3), which is assigned as the intervalence CT band. The mixed valence complex is paramagnetic, and an isotropic EPR signal at g = 2.17 is observed at 77 and 4 K. The solvent independence and narrowness of the 1200 nm band show that complex II is a Robin and Day class III mixed-valence complex.  相似文献   

11.
Xi J  Ai X  He Z 《Talanta》2003,59(5):1045-1051
A chemiluminescence (CL) method for the determination of barbituric acid (BA) was proposed, which is based on the enhancement of BA to the CL intensity of Tris-(1,10-phenanthroline)ruthenium(II) (Ru(phen)32+)-cerium(IV) (Ce(IV)) system. The concentration of BA is proportional to the CL intensity in the range of 5.0×10−3-2.0 μg ml−1. The detection limit is 6.9×10−4 μg ml−1. The relative standard deviation (R.S.D.) of determining 11 samples containing 0.20 μg ml−1 BA is 3.2%. This CL method has been successfully applied to the determination of BA in the synthetic samples. The mechanism of CL reaction was studied.  相似文献   

12.
Two new ligands, 3-(pyrazin-2-yl)-as-triazino[5,6-f]-5-methoxylisatin (dtmi), 3-(pyrazin-2-yl)-as-triazino[5,6-f]-5-nitroisatin (dtni) and their ruthenium(II) complexes [Ru(phen)2(dtmi)](ClO4)2 (1) and [Ru(phen)2(dtni)](ClO4)2 (2) have been prepared and characterized by elemental analysis, FAB-MS, ES-MS and 1H NMR. The DNA-binding behaviors of complexes have been studied by spectroscopic titration, viscosity measurements, thermal denaturation and circular dichromism (CD). The results indicate that the complexes 1 and 2 interact with calf thymus DNA (CT-DNA) by intercalative mode. The DNA-binding affinity of the complexes 2 is larger than that complex 1 does.  相似文献   

13.
14.
合成了Ru(bpy)2(phen)(PF6)2 和Ru(bpy)(phen)2(PF6)2 (bpy和phen分别为2,2′-联吡啶和1,10 -邻菲咯啉)两种电化学发光物质,以 1HNMR谱研究这两种配合物的立体结构,利用 1H - 1HCOSY(同核相关谱)核磁共振技术详细分析并归属了它们的氢谱峰。  相似文献   

15.
The labile nature of the coordinated water ligands in the organometallic aqua complex [Ru(dppe)(CO)(H(2)O)(3)][OTf](2) (1) (dppe = Ph(2)PCH(2)CH(2)PPh(2); OTf = OSO(2)CF(3)) has been investigated through substitution reactions with a range of incoming ligands. Dissolution of 1 in acetonitrile or dimethyl sulfoxide results in the facile displacement of all three waters to give [Ru(dppe)(CO)(CH(3)CN)(3)][OTf](2) (2) and [Ru(dppe)(CO)(DMSO)(3)][OTf](2) (3), respectively. Similarly, 1 reacts with Me(3)CNC to afford [Ru(dppe)(CO)(CNCMe(3))(3)][OTf](2) (4). Addition of 1 equiv of 2,2'-bipyridyl (bpy) or 4,4'-dimethyl-2,2'-bipyridyl (Me(2)bpy) to acetone/water solutions of 1 initially yields [Ru(dppe)(CO)(H(2)O)(bpy)][OTf](2) (5a) and [Ru(dppe)(CO)(H(2)O)(Me(2)bpy)][OTf](2) (6a), in which the coordinated water lies trans to CO. Compounds 5a and 6a rapidly rearrange to isomeric species (5b, 6b) in which the ligated water is trans to dppe. Further reactivity has been demonstrated for 6b, which, upon dissolution in CDCl(3), loses water and coordinates a triflate anion to afford [Ru(dppe)(CO)(OTf)(Me(2)bpy)][OTf] (7). Reaction of 1 with CH(3)CH(2)CH(2)SH gives the dinuclear bridging thiolate complex [[(dppe)Ru(CO)](2)(mu-SCH(2)CH(2)CH(3))(3)][OTf] (8). The reaction of 1 with CO in acetone/water is slow and yields the cationic hydride complex [Ru(dppe)(CO)(3)H][OTf] (9) via a water gas shift reaction. Moreover, the same mechanism can also be used to account for the previously reported synthesis of 1 upon reaction of Ru(dppe)(CO)(2)(OTf)(2) with water (Organometallics 1999, 18, 4068).  相似文献   

16.
A dissymmetric 1,10-phenanthroline chelate (N-phen-S) bearing two polyether chains terminated by two monodentate ligands of the benzonitrile (N) and dialkylesulfoxide (S) types was synthesized, characterized, and coordinated to ruthenium. The corresponding Ru(terpy)(N-phen-S)2+ complexes (terpy = 4'-(3,5-ditertiobutylphenyl)-2,2';6',2' '-terpyridine) were fully characterized as being two coordination isomers of the scorpionate type with one of the two tails occupying the sixth position on the coordination sphere. Photoexpulsion of the coordinated tail led to opening of the ruthena-macrocycle and subsequent rearrangement of the bidentate chelate. This rearrangement consisted of a 90 degrees rotation of the phenanthroline around the ruthenium atom. Selective irradiation of one isomer in a mixture of the two was undertaken using band-pass filters; this resulted in an enrichment of the nonirradiated isomer in the mixture. Thermal back-coordination of the tail was investigated in the dark. It took place quantitatively from the corresponding ruthenium chloride complex by trapping of the anion with silver salts.  相似文献   

17.
Recently.anelectrochemiluminescent(ECL)Ptelectrodecoated\vithaRtl(bp})::derivativemoditiedchitosan/silicagelnlelllbralledevelopedbyZhaoalu/'.hasbeedsuccesstlill}appliedinselectivedetectionofoxalicacid.Yangel'I/.-.havediscoveredthatECLetficiencyofRu(phen),='ismuchhigherthanthatofRu(bp}i);=.Thus.wedesignedandsynthesizedanewactivematerialforECLsensor*Ru(phen)=(phenNHCH,Br)(PF,)=.andthesyntheticrouteisshowninFigure1.Figure1.SchemeI\)rs}nthcticrouteofRu(phcn)2(phCll-NIICIl:Br)(I'I:,)2…  相似文献   

18.
Polypyridyl ligand 9a,13a‐dihydro‐4,5,9,14‐tetraaza‐benzo[b]triphenylene‐11‐yl)‐phenyl‐methanone (BDPPZ) and its complexes [Ru(bpy)2BDPPZ]2+, [Ru(dmb)2BDPPZ]2+ and [Ru(phen)2BDPPZ]2+ (where bpy = 2,2′‐bipyridine, dmb = 4,4′‐dimethyl‐2,2′‐bipyridine, phen = 1,10‐phenanthroline) have been synthesized and characterized by elemental analysis, IR, UV–vis, 1H‐NMR, 13C‐NMR and mass spectra. The DNA‐binding properties of the complexes were investigated by absorption, emission, melting temperature and viscosity measurements. Experimental results indicate that the three complexes can intercalate into DNA base pairs. Photo activated cleavage of pBR‐322 DNA by the three complexes was also studied. Further, all three Ru(II) complexes synthesized were screened for their antimicrobial activity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
The salts [(eta-C(5)Me(5))Ru(NO)(bipy)][OTf](2) (1[OTf](2)) and [(eta-C(5)Me(5))Ru(NO)(dppz)][OTf](2) (2[OTf](2)) are obtained from the treatment of (eta-C(5)Me(5))Ru(NO)(OTf)(2) with 2,2'-bipyridine (bipy) or dipyrido[3,2-a:2',3'-c]phenazine (dppz) (OTf = OSO(2)CF(3)). X-ray data for 1[OTf](2): monoclinic space group P2(1)/c, a = 11.553 (4) ?, b = 16.517 (5) ?, c = 14.719 (4) ?, beta = 94.01 (2) degrees, V = 2802 (2) ?(3), Z = 4, R1 = 0.0698. X-ray data for 2[OTf](2): monoclinic space group P2(1)/c, a = 8.911 (2) ?, b = 30.516 (5) ?, c = 24.622 (4) ?, beta = 99.02 (1) degrees, V = 6613 (2) ?(3), Z = 8, R1 = 0.0789. Both 1[OTf](2) and 2[OTf](2) are soluble in water where they exhibit irreversible electrochemical oxidation and reduction. A fluorescence-monitored titration of a DNA solution containing 2[OTf](2) with ethidium bromide provides evidence that 2(2+) intercalates into DNA with a binding constant greater than 10(6) M(-)(1). DNA cleavage occurs when the DNA solutions containing 2[OTf](2) are photolyzed or treated with H(2)O(2) or K(2)S(2)O(8).  相似文献   

20.
The preparations, X-ray structures, and detailed physical characterizations are presented for three new tetranuclear Fe(III)/RCO(2)(-)/phen complexes, where phen = 1,10-phenanthroline: [Fe(4)(OHO)(OH)(2)(O(2)CMe)(4)(phen)(4)](ClO(4))(3).4.4MeCN.H(2)O (1.4.4MeCN.H(2)O); [Fe(4)O(2)(O(2)CPh)(7)(phen)(2)](ClO(4)).2MeCN (2.2MeCN); [Fe(4)O(2)(O(2)CPh)(8)(phen)(2)].2H(2)O (3.2H(2)O). Complex 1.4.4MeCN.H(2)O crystallizes in space group P2(1)/n, with a = 18.162(9) A, b = 39.016(19) A, c = 13.054(7) A, beta = 104.29(2) degrees, Z = 4, and V = 8963.7 A(3). Complex 2.2MeCN crystallizes in space group P2(1)/n, with a = 18.532(2) A, b = 35.908(3) A, c = 11.591(1) A, beta = 96.42(1) degrees, Z = 4, and V = 7665(1) A(3). Complex 3.2H(2)O crystallizes in space group I2/a, with a = 18.79(1) A, b = 22.80(1) A, c = 20.74(1) A, beta = 113.21(2) degrees, Z = 4, and V = 8166(1) A(3). The cation of 1 contains the novel [Fe(4)(mu(4)-OHO)(mu-OH)(2)](7+) core. The core structure of 2 and 3 consists of a tetranuclear bis(mu(3)-O) cluster disposed in a "butterfly" arrangement. Magnetic susceptibility data were collected on 1-3 in the 2-300 K range. For the rectangular complex 1, fitting the data to the appropriate theoretical chi(M) vs T expression gave J(1) = -75.4 cm(-1), J(2) = -21.4 cm(-1), and g = 2.0(1), where J(1) and J(2) refer to the Fe(III)O(O(2)CMe)(2)Fe(III) and Fe(III)(OH)Fe(III) pairwise exchange interactions, respectively. The S = 0 ground state of 1 was confirmed by 2 K magnetization data. The data for 2 and 3 reveal a diamagnetic ground state with antiferromagnetic exchange interactions among the four high-spin Fe(III) ions. The exchange coupling constant J(bb) ("body-body" interaction) is indeterminate due to prevailing spin frustration, but the "wing-body" antiferromagnetic interaction (J(wb)) was evaluated to be -77.6 and -65.7 cm(-1) for 2 and 3, respectively, using the appropriate spin Hamiltonian approach. M?ssbauer spectra of 1-3 are consistent with high-spin Fe(III) ions. The data indicated asymmetry of the Fe(4) core of 1 at 80 K, which is not detected at room temperature due to thermal motion of the core. The spectra of 2 and 3 analyze as two quadrupole-split doublets which were assigned to the body and wing-tip pairs of metal ions. (1)H NMR spectra are reported for 1-3 with assignment of the main resonances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号