首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments and simulations on single α-actin filaments in the Poiseuille flow through a microchannel show that the center-of-mass probability density across the channel assumes a bimodal shape as a result of pronounced cross-streamline migration. We reexamine the problem and perform Brownian dynamics simulations for a bead-spring chain with bending elasticity. Hydrodynamic interactions between the pointlike beads are taken into account by the two-wall Green tensor of the Stokes equations. Our simulations reproduce the bimodal distribution only when hydrodynamic interactions are taken into account. Numerical results on the orientational order of the end-to-end vector of the model polymer are also presented together with analytical hard-needle expressions at zero flow velocity. We derive a Smoluchowski equation for the center-of-mass distribution and carefully analyze the different contributions to the probability current that causes the bimodal distribution. As for flexible polymers, hydrodynamic repulsion explains the depletion at the wall. However, in contrast to flexible polymers, the deterministic drift current mainly determines migration away from the centerline and thereby depletion at the center. Diffusional currents due to a position-dependent diffusivity become less important with increasing polymer stiffness.  相似文献   

2.
Understanding the behavior of a polyelectrolyte in confined spaces has direct relevance in design and manipulation of microfluidic devices, as well as transport in living organisms. In this paper, a coarse-grained model of anionic semiflexible polyelectrolyte is applied, and its structure and dynamics are fully examined with Brownian dynamics (BD) simulations both in bulk solution and under confinement between two negatively charged parallel plates. The modeling is based on the nonlinear bead-spring discretization of a continuous chain with additional long-range electrostatic, Lennard-Jones, and hydrodynamic interactions between pairs of beads. The authors also consider the steric and electrostatic interactions between the bead and the confining wall. Relevant model parameters are determined from experimental rheology data on the anionic polysaccharide xanthan reported previously. For comparison, both flexible and semiflexible models are developed accompanying zero and finite intrinsic persistence lengths, respectively. The conformational changes of the polyelectrolyte chain induced by confinements and their dependence on the screening effect of the electrolyte solution are faithfully characterized with BD simulations. Depending on the intrinsic rigidity and the medium ionic strength, the polyelectrolyte can be classified as flexible, semiflexible, or rigid. Confined flexible and semiflexible chains exhibit a nonmonotonic variation in size, as measured by the radius of gyration and end-to-end distance, with changing slit width. For the semiflexible chain, this is coupled to the variations in long-range bond vector correlation. The rigid chain, realized at low ionic strength, does not have minima in size but exhibits a sigmoidal transition. The size of confined semiflexible and rigid polyelectrolytes can be well described by the wormlike chain model once the electrostatic effects are taken into account by the persistence length measured at long length scale.  相似文献   

3.
Structure and transport properties of dendrimers in dilute solution are studied with the aid of Brownian dynamics simulations. To investigate the effect of molecular topology on the properties, linear chain, star, and dendrimer molecules of comparable molecular weights are studied. A bead-spring chain model with finitely extensible springs and fluctuating hydrodynamic interactions is used to represent polymer molecules under Theta conditions. Structural properties as well as the diffusivity and zero-shear-rate intrinsic viscosity of polymers with varied degrees of branching are analyzed. Results for the free-draining case are compared to and found in very good agreement with the Rouse model predictions. Translational diffusivity is evaluated and the difference between the short-time and long-time behavior due to dynamic correlations is observed. Incorporation of hydrodynamic interactions is found to be sufficient to reproduce the maximum in the intrinsic viscosity versus molecular weight observed experimentally for dendrimers. Results of the nonequilibrium Brownian dynamics simulations of dendrimers and linear chain polymers subjected to a planar shear flow in a wide range of strain rates are also reported. The flow-induced molecular deformation of molecules is found to decrease hydrodynamic interactions and lead to the appearance of shear thickening. Further, branching is found to suppress flow-induced molecular alignment and deformation.  相似文献   

4.
A generic coarse-grained bead-and-spring model,mapped onto comb-shaped polycarboxylate-based(PCE)superplasticizers,is developed and studied by Langevin molecular dynamics simulations with implicit solvent and explicit counterions.The agreement on the radius of gyration of the PCEs with experiments shows that our model can be useful in studying the equilibrium sizes of PCEs in solution.The effects of ionic strength,side-chain number,and side-chain length on the conformational behavior of PCEs in solution are explored.Single-chain equilibrium properties,including the radius of gyration,end-to-end distance and persistenee length of the polymer backbone,shape-asphericity parameter,and the mean span dimension,are determined.It is found that with the increase of ionic strength,the equilibrium sizes of the polymers decrease only slightly,and a linear dependenew of the persistence length of backbone on the Debye screening length is found,in good agreement with the theory developed by Dobrynin.Increasing side-chain numbers and/or side-chain lengths increases not only the equilibrium sizes(radius of gyration and mean span)of the polymer as a whole,but also the persistence length of the backbone due to excluded volume interactions.  相似文献   

5.
A numerical method to simulate the dynamics of polymer solutions in confined geometries has been implemented and tested. The method combines a fluctuating lattice-Boltzmann model of the solvent [Ladd, Phys. Rev. Lett. 70, 1339 (1993)] with a point-particle model of the polymer chains. A friction term couples the monomers to the fluid [Ahlrichs and Dunweg, J. Chem. Phys. 111, 8225 (1999)], providing both the hydrodynamic interactions between the monomers and the correlated random forces. The coupled equations for particles and fluid are solved on an inertial time scale, which proves to be surprisingly simple and efficient, avoiding the costly linear algebra associated with Brownian dynamics. Complex confined geometries can be represented by a straightforward mapping of the boundary surfaces onto a regular three-dimensional grid. The hydrodynamic interactions between monomers are shown to compare well with solutions of the Stokes equations down to distances of the order of the grid spacing. Numerical results are presented for the radius of gyration, end-to-end distance, and diffusion coefficient of an isolated polymer chain, ranging from 16 to 1024 monomers in length. The simulations are in excellent agreement with renormalization group calculations for an excluded volume chain. We show that hydrodynamic interactions in large polymers can be systematically coarse-grained to substantially reduce the computational cost of the simulation. Finally, we examine the effects of confinement and flow on the polymer distribution and diffusion constant in a narrow channel. Our results support the qualitative conclusions of recent Brownian dynamics simulations of confined polymers [Jendrejack et al., J. Chem. Phys. 119, 1165 (2003) and Jendrejack et al., J. Chem. Phys. 120, 2513 (2004)].  相似文献   

6.
The dynamics of flow-induced translocation of polymers through a fluidic channel has been studied by dissipative particle dynamics (DPD) approach. Unlike implicit solvent models, the many-body energetic and hydrodynamic interactions are preserved naturally by incorporating explicit solvent particles in this approach. The no-slip wall boundary and the adaptive boundary conditions have been implemented in the modified DPD approach to model the hydrodynamic flow within a specific wall structure of fluidic channel and control the particles' density fluctuations. The results show that the average translocation time versus polymer chain length satisfies a power-law scaling of τ ~N(1.152). The conformational changes and translocation dynamics of polymers through the fluidic channel have also been investigated in our simulations, and two different translocation processes, i.e., the single-file and double-folded translocation events, have been observed in detail. These findings may be helpful in understanding the conformational and dynamic behaviors of such polymer and/or DNA molecules during the translocation processes.  相似文献   

7.
In this work, we investigate the effect of hydrodynamic interactions on the dynamics of DNA translocation through micropores. We simulate DNA as a bead-spring chain and use a lattice Boltzmann method to simulate the flow field that arises from the motion of the molecule. We investigate the free-draining entrance of DNA to the pore by diffusion and find that, consistent with experiments, molecules have a higher probability of entering the pore from one end. We then consider the electric-field driven translocation of 21-210 microm DNA with and without hydrodynamic interactions. Consistent with experiments, we study translocation events that are much shorter than the relaxation time of DNA. We find that the effect of hydrodynamic interactions on this process is to cause different regions of a molecule, other than the ones pulled by voltage or chain connectivity into the pore, to move toward the pore. We quantify this effect and show that it is smaller than the difference in the translocation dynamics of chains that arises from different initial configurations of the molecules. A power-law scaling of translocation time with chain length is observed, with exponents of 1.28+/-0.03 and 1.31+/-0.03 in simulations with and without hydrodynamic interactions, respectively. Our results are in good agreement with recent translocation experiments conducted in small pores and show that, for the regime considered in this work, hydrodynamic interactions play a minor role in the relation of the translocation time to chain length. For fast translocation processes, the effect of hydrodynamic interactions is local and the main factor determining the dynamics of DNA is the initial configuration of the molecules.  相似文献   

8.
We have developed a quantitative predictive model capable of describing the dynamics of migration of intrinsically curved DNA fragments on polyacrylamide gels. The model takes into account structural features of DNA, end-to-end distance, screening of hydrodynamic interactions, ionic strength of buffer, electrostatic persistence length, structural fluctuations of the macromolecule, counter condensation, and variation of dielectric constant and viscosity of water with MPD. In doing so, we have also addressed a decade old issue on the effect of the organic solvent 2-methyl-2,4-pentanediol on gel migration of phased A-tracts. We show here that A-tract-solvent interactions are less favored compared with A-tract-A-tract and solvent-solvent interactions.  相似文献   

9.
We present the derivation of coarse-grained force fields for two types of polymers, polyethylene (PE), and cis-polybutadiene (cis-PB), using the concept of potential of mean force. Coarse-grained force fields were obtained from microscopic simulations for several coarse-graining levels, i.e., different number of monomers lambda per mesoscopic unit called "bead." These force fields are then used in dissipative particle dynamics (DPD) simulations to study structural and dynamical properties of polymer melts of PE and cis-PB. The radial distribution functions g(R), the end-to-end distance R0, the end-to-end vector relaxation time tau, and the chain center of mass self-diffusion D(CM), are computed for different chain lengths at different coarse-graining factor lambda. Scaling laws typical of the Rouse regime are obtained for both polymers for chain lengths ranging from 6 to 50 beads. It is found that the end-to-end distance R0 obtained from DPD simulations agree well with values obtained from both microscopic simulations and experiments. The dependence of the friction coefficient used in DPD simulations versus the coarse-graining level is discussed in view of the overall scaling of the dynamical properties.  相似文献   

10.
Discontinuous molecular dynamics simulations are performed on a system containing 32 hard chains of length 192 at a volume fraction of phi = 0.45 to explore the idea that localized entanglements have a significant effect on the dynamics of the individual chains within an entangled polymer melt. Anomalous behavior can still be observed when studying the dynamics of the individual chains, although increased time averaging causes the anomalous relaxation-memory-release behavior that was observed previously in the system to smooth out. First, the individual chain mean squared displacements and apparent diffusion coefficients are calculated, and a wide distribution of diffusive behavior is found. Although the apparent diffusion coefficient curve averaged over all chains displays the predicted long-time diffusive behavior, the curves for the individual chains differ both qualitatively and quantitatively. They display superdiffusive, diffusive, and subdiffusive behavior, with the largest percentage of chains exhibiting superdiffusive behavior and the smallest percentage exhibiting the predicted diffusive behavior. Next, the individual chain end-to-end vector autocorrelation functions and relaxation times are determined, and a wide distribution of stress relaxation behavior is found. The times when the end-to-end vector autocorrelation functions relax completely span almost an order of magnitude in reduced time. For some chains, the end-to-end vector autocorrelation function relaxes smoothly toward zero similar to the system average; however, for other chains the relaxation is slowed greatly, indicating the presence of additional entanglements. Almost half of the chains exhibit the anomalous behavior in the end-to-end vector autocorrelation function. Finally, the dynamic properties are displayed for a single chain exhibiting anomalous relaxation-memory-release behavior, supporting the idea that the relaxation-memory-release behavior is a single-chain property.  相似文献   

11.
On the basis of the recently developed optimized Rouse-Zimm theory of chain polymers with excluded volume interactions, we calculate the long-time first-order rate constant k(1) for end-to-end cyclization of linear chain polymers. We first find that the optimized Rouse-Zimm theory provides the longest chain relaxation times tau(1) of excluded volume chains that are in excellent agreement with the available Brownian dynamics simulation results. In the free-draining limit, the cyclization rate is diffusion-controlled and k(1) is inversely proportional to tau(1), and the k(1) values calculated using the Wilemski-Fixman rate theory are in good agreement with Brownian dynamics simulation results. However, when hydrodynamic interactions are included, noticeable deviations are found. The main sources of errors are fluctuating hydrodynamic interaction and correlation hole effects as well as the non-Markovian reaction dynamic effect. The physical natures of these factors are discussed, and estimates for the magnitudes of required corrections are given. When the corrections are included, the present theory allows the prediction of accurate k(1) values for the cyclization of finite-length chains in good solvents as well as the correct scaling exponent in the long-chain limit.  相似文献   

12.
本文采用多粒子碰撞动力学与分子动力学耦合的模拟方法研究了环形高分子单链在良溶剂中的静态与动态性质,并与线形分子进行了对比.研究发现,环形高分子链内粒子之间的平均距离小于线形链,即粒子排列得更加紧密;相应的均方回转半径也小于线形链,线形链与环形链的均方回转半径的比值为1.77;同时,环形链扩散的速度也比线形链快,两者比值为1.10.模拟结果揭示了扩散行为是排斥体积作用和流体力学相互作用耦合的结果,在扩散过程中,流体力学相互作用消减了排斥体积作用对扩散行为的贡献.此外,通过对有和没有流体力学相互作用的多粒子碰撞动力学得到的结果作对比,研究了流体力学相互作用对高分子静态和动态行为的影响,结果表明,流体力学相互作用使高分子链在极稀溶液中的扩散速度变快.  相似文献   

13.
Assessing conformational dimensions of macromolecules is a topic of long-standing interest. Because of its simplicity, it is attractive to investigate the chain properties in θ-conditions. Under these special conditions, the effects of excluded volume of the segments of the polymer chain vanish. The molecular chain is only subject to local constraints resulting from the bond structure and the hindrance to rotations about bonds. To model θ-conditions a contour length dependent cutoff is introduced ensuring that only nonbonded interactions of atoms of neighbouring monomeric units are taken into account for energy calculations. Using this energy model we will show that it is possible to model θ-conditions of a single bisphenol-A polycarbonate (BPA-PC) chain in vacuum by two different methods: (i) (Pseudo-) Langevin dynamics simulations and (ii) regular reassignment of randomly generated atom velocities during a molecular dynamics simulation. Both methods can be used to avoid oscillative dynamic behaviour of the chain. Calculations of the end-to-end vector and the radius of gyration of the equilibrium ensembles derived from simulations at different temperatures show good agreement with experimental data. Thus our model techniques are well suited to simulate θ-conditions with small computational expense.  相似文献   

14.
The adsorption of single polyelectrolyte molecules onto surfaces decorated with periodic arrays of charged patches was studied using Brownian dynamics simulations. A free-draining, freely jointed bead-rod chain was used to model the polyelectrolyte, and electrostatic interactions were incorporated using a screened Coulombic potential with the excluded volume accounted for by a hard-sphere potential. The simulations predicted that the polyelectrolyte lies close to the adsorbing surface if the patch length, surface charge density, and screening length are sufficiently large. Chain conformations were found to be very sensitive to patch length, patch spacing, and the nature of the charge on adjacent patches. This is due both to the size of the polymer relative to patch length and spacing and to the structure of the electric field near the surface. In some cases, the component of the radius of gyration parallel to the surface can be made smaller than its free-solution value, which is contrary to what is observed for a uniformly charged surface. Isolated charged patches were also considered, and significant adsorption was observed above a critical surface charge density. The results demonstrate how polyelectrolyte conformations can be controlled by the design of the charged patches and may be useful for applications in which adsorbed polyelectrolyte films play a key role.  相似文献   

15.
Spurred by an experimental controversy in the literature, we investigate the end-monomer dynamics of semiflexible polymers through Brownian hydrodynamic simulations and dynamic mean-field theory. Precise experimental observations over the last few years of end-monomer dynamics in the diffusion of double-stranded DNA have given conflicting results: one study indicated an unexpected Rouse-like scaling of the mean squared displacement (MSD) ?r(2)(t)? ~ t(1/2) at intermediate times, corresponding to fluctuations at length scales larger than the persistence length but smaller than the coil size; another study claimed the more conventional Zimm scaling ?r(2)(t)? ~ t(2/3) in the same time range. Using hydrodynamic simulations, analytical and scaling theories, we find a novel intermediate dynamical regime where the effective local exponent of the end-monomer MSD, α(t) = d log?r(2)(t)?/d log t, drops below the Zimm value of 2/3 for sufficiently long chains. The deviation from the Zimm prediction increases with chain length, though it does not reach the Rouse limit of 1/2. The qualitative features of this intermediate regime, found in simulations and in an improved mean-field theory for semiflexible polymers, in particular the variation of α(t) with chain and persistence lengths, can be reproduced through a heuristic scaling argument. Anomalously low values of the effective exponent α are explained by hydrodynamic effects related to the slow crossover from dynamics on length scales smaller than the persistence length to dynamics on larger length scales.  相似文献   

16.
Brownian dynamics simulations with hydrodynamic interactions are conducted to investigate the self-diffusion of charged tracer particles in a dilute solution of charged polymers, which are modeled by bead-spring chains. The Debye-Hückel approximation is used for the electrostatic interactions. The hydrodynamic interactions are implemented by the Ewald summation of the Rotne-Prager tensor. Our simulations find that the difference in short- and long-time diffusivities is very slight in uncharged short-chain solutions. For charged systems, to the contrary, the difference becomes considerable. The short-time diffusivity is found to increase with increasing chain length, while an opposite behavior is obtained for the long-time diffusivity. The former is attributed to the hydrodynamic screening among beads in a same chain due to the bead connectivity. The latter is explained by the memory effect arising from the electrostatic repulsion and chain length. The incorporation of hydrodynamic interactions improves the agreement between the simulation prediction and the experimental result.  相似文献   

17.
The adsorption of single polyelectrolyte molecules in shear flow is studied using Brownian dynamics simulations with hydrodynamic interaction (HI). Simulations are performed with bead-rod and bead-spring chains, and electrostatic interactions are incorporated through a screened Coulombic potential with excluded volume accounted for by the repulsive part of a Lennard-Jones potential. A correction to the Rotne-Prager-Yamakawa tensor is derived that accounts for the presence of a planar wall. The simulations show that migration away from an uncharged wall, which is due to bead-wall HI, is enhanced by increases in the strength of flow and intrachain electrostatic repulsion, consistent with kinetic theory predictions. When the wall and polyelectrolyte are oppositely charged, chain behavior depends on the strength of electrostatic screening. For strong screening, chains get depleted from a region close to the wall and the thickness of this depletion layer scales as N(1/3)Wi(2/3) at high Wi, where N is the chain length and Wi is the Weissenberg number. At intermediate screening, bead-wall electrostatic attraction competes with bead-wall HI, and it is found that there is a critical Weissenberg number for desorption which scales as N(-1/2)kappa(-3)(l(B)|sigmaq|)(3/2), where kappa is the inverse screening length, l(B) is the Bjerrum length, sigma is the surface charge density, and q is the bead charge. When the screening is weak, adsorbed chains are observed to align in the vorticity direction at low shear rates due to the effects of repulsive intramolecular interactions. At higher shear rates, the chains align in the flow direction. The simulation method and results of this work are expected to be useful for a number of applications in biophysics and materials science in which polyelectrolyte adsorption plays a key role.  相似文献   

18.
The authors analyzed extensively the dynamics of polymer chains in solutions simulated with dissipative particle dynamics (DPD), with a special focus on the potential influence of a low Schmidt number of a typical DPD fluid on the simulated polymer dynamics. It has been argued that a low Schmidt number in a DPD fluid can lead to underdevelopment of the hydrodynamic interaction in polymer solutions. The authors' analyses reveal that equilibrium polymer dynamics in dilute solution, under typical DPD simulation conditions, obey the Zimm [J. Chem. Phys. 24, 269 (1956)] model very well. With a further reduction in the Schmidt number, a deviation from the Zimm model to the Rouse model is observed. This implies that the hydrodynamic interaction between monomers is reasonably developed under typical conditions of a DPD simulation. Only when the Schmidt number is further reduced, the hydrodynamic interaction within the chains becomes underdeveloped. The screening of the hydrodynamic interaction and the excluded volume interaction as the polymer volume fraction is increased are well reproduced by the DPD simulations. The use of soft interaction between polymer beads and a low Schmidt number do not produce noticeable problems for the simulated dynamics at high concentrations, except for the entanglement effect which is not captured in the simulations.  相似文献   

19.
Molecular-dynamics simulations of a short-chain polymer melt between two brush-covered surfaces under shear have been performed. The end-grafted polymers which constitute the brush have the same chemical properties as the free chains in the melt and provide a soft deformable substrate. Polymer chains are described by a coarse-grained bead-spring model, which includes excluded volume and backbone connectivity of the chains. The grafting density of the brush layer offers a way of controlling the behavior of the surface without altering the molecular interactions. We perform equilibrium and nonequilibrium molecular-dynamics simulations at constant temperature and volume using the dissipative particle dynamics thermostat. The equilibrium density profiles and the behavior under shear are studied as well as the interdigitation of the melt into the brush, the orientation on different length scales (bond vectors, radius of gyration, and end-to-end vector) of free and grafted chains, and velocity profiles. The obtained boundary conditions and slip length show a rich behavior as a function of grafting density and shear velocity.  相似文献   

20.
The model is presented for coarse grained dynamics of macromolecules in dilute solutions. The coarse graining is achieved by dividing the polymer chain into subchains, consisting of many monomers, and spatial averaging over lengths that are large compared to the mean-square end-to-end distance of subchains and small compared to macromolecule size. Kinetic equations of the model are derived from first principles of statistical mechanics under the assumption that subchain center of mass positions and solvent flow velocity field are the only slow variables of the system. In this approach hydrodynamic interactions result from the intercomponent friction forces between polymer and solvent instead of boundary conditions on the bead surfaces as in traditional theories. The integrodifferential diffusion equation is obtained for steady flows with the kernel involving the Oseen tensor multiplied by equilibrium distribution in the space of the subchain center of mass positions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号