首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantum transducers can transfer quantum information between different systems. Microwave–optical photon conversion is important for future quantum networks to interconnect remote superconducting quantum computers with optical fibers. Here, a high-speed quantum transducer based on a single-photon emitter in an atomically thin membrane resonator, that can couple single microwave photons to single optical photons, is proposed. The 2D resonator is a freestanding van der Waals heterostructure (which may consist of hexagonal boron nitride, graphene, or other 2D materials) that hosts a quantum emitter. The mechanical vibration (phonon) of the 2D resonator interacts with optical photons by shifting the optical transition frequency of the single-photon emitter with strain or the Stark effect. The mechanical vibration couples to microwave photons by shifting the resonant frequency of an LC circuit that includes the membrane. Thanks to the small mass of the 2D resonator, both the single-photon optomechanical coupling strength and the electromechanical coupling strength can reach the strong coupling regime. This provides a way for high-speed quantum state transfer between a microwave photon, a phonon, and an optical photon.  相似文献   

2.
We describe a microwave photon counter based on the current-biased Josephson junction. The junction is tuned to absorb single microwave photons from the incident field, after which it tunnels into a classically observable voltage state. Using two such detectors, we have performed a microwave version of the Hanbury Brown-Twiss experiment at 4 GHz and demonstrated a clear signature of photon bunching for a thermal source. The design is readily scalable to tens of parallelized junctions, a configuration that would allow number-resolved counting of microwave photons.  相似文献   

3.
Time synchronization and phase shaping of single photons both play fundamental roles in quantum information applications that rely on multi-photon quantum interference.Phase shaping typically requires separate modulators with extra insertion losses.Here,we develop an all-optical built-in phase modulator for single photons using a quantum memory.The fast phase modulation of a single photon in both step and linear manner are verified by observing the efficient quantum-memory-assisted Hong-Ou-Mandel interference between two single photons,where the anti-coalescence effect of bosonic photon pairs is demonstrated.The developed phase modulator may push forward the practical quantum information applications.  相似文献   

4.
李银海  许昭怀  王双  许立新  周志远  史保森 《物理学报》2017,66(12):120302-120302
独立光子源的干涉是实现复杂量子体系应用(比如多光子纠缠态产生和量子隐形传态等)的核心技术.利用100 GHz密集波分复用技术,实现了1.55μm全光纤多通道独立纠缠光子源的Hong-Ou-Mandel干涉,在不去除暗符合(随机符合计数)的情况下,可见度为53.2%±8.4%,去除暗符合可见度可达到82.9%±5.3%.给出了关于色散位移光纤中基于自发四波混频过程产生的单光子光谱纯度严格的理论描述,模拟了抽运脉冲宽度和滤波器带宽对单光子光谱纯度的影响,并给出了理论上的最佳条件(最佳的抽运脉冲宽度为8 ps,高斯滤波器带宽为40 GHz及以下).在测量Hong-Ou-Mandel干涉之前,先测量了液氮冷却状态下的色散位移光纤关联光子源的符合和随机符合比率,在抽运功率为23μW的情况下,最大比率可以达到131.Hong-Ou-Mandel干涉在高精度光学测量、测量装置无关的量子密钥分配等应用中扮演着极为重要的角色.  相似文献   

5.
We observe that a mesoscopic field made of several tens of microwave photons exhibits quantum features when interacting with a single Rydberg atom in a high-Q cavity. The field is split into two components whose phases differ by an angle inversely proportional to the square root of the average photon number. The field and the atomic dipole are phase entangled. These manifestations of photon graininess vanish at the classical limit. This experiment opens the way to studies of large quantum state superpositions at the quantum-classical boundary.  相似文献   

6.
We report the full implementation of a quantum cryptography protocol using a stream of single photon pulses generated by a stable and efficient source operating at room temperature. The single photon pulses are emitted on demand by a single nitrogen-vacancy color center in a diamond nanocrystal. The quantum bit error rate is less that 4.6% and the secure bit rate is 7700 bits/s. The overall performances of our system reaches a domain where single photons have a measurable advantage over an equivalent system based on attenuated light pulses.  相似文献   

7.
We present two schemes to generate frequency-multiplexed entangled (FME) single photons by coherently mapping photonic entanglement into and out of a quantum memory based on Raman interactions. By splitting a single photon and performing subsequent state transfer, we separate the generation of entanglement and its frequency conversion, and find that the both progresses have the characteristic of inherent determinacy. Our theory can reproduce the prominent features of observed results including pulse shapes and the condition for deterministically generating the FME single photons. The schemes are suitable for the entangled photon pairs with a wider frequency range, and could be immune to the photon loss originating from cavity-mode damping, spontaneous emission, and the dephasing due to atomic thermal motion. The sources might have significant applications in wavelength-division-multiplexing quantum key distribution.  相似文献   

8.
A photon source with high-dimensional entanglement is able to bring increasing capacity of information in quantum communication.The dimensionality is determined by the chosen degree of freedom of the photons and is limited by the complexity of the physical systems.Here we propose a new type of high-dimensional entangled photon source,generated via path-indistinguishable scheme from a two-dimensional atomic cloud,which is prepared in a magneto-optical trap.To verify the photon source,we demonstra...  相似文献   

9.
We demonstrate a two-qubit Deutsch-Jozsa algorithm with single photons from a single InP quantum dot. The qubits are implemented via the spatial mode and the polarization of a single photon. Our photon source is operated both under continuous and pulsed excitation, the latter allowing deterministic quantum logic by generating photons on demand with a strong suppression of two-photon events. The computation reached a success probability of up to 79%. We also exploit the concept of decoherence-free subspaces that helps to make our experimental setup robust against sources of phase noise.  相似文献   

10.
Using the single-photon nonlocality, we propose a quantum novel overloading cryptography scheme, in which a single photon carries two bits information in one-way quantum channel. Two commutative modes of the single photon, the polarization mode and the spatial mode, are used to encode secret information. Strict time windows are set to detect the impersonation attack. The spatial mode which denotes the existence of photons is noncommutative with the phase of the photon, so that our scheme is secure against photon-number-splitting attack. Our protocol may be secure against individual attack.  相似文献   

11.
苗强  李响  吴德伟  罗均文  魏天丽  朱浩男 《物理学报》2019,68(7):70302-070302
量子微波信号既保留了经典微波信号的空间远距离传播能力,又具有非经典的量子特性,为微波频段量子通信、量子导航及量子雷达等基于大尺度动态空间环境无线传输的量子信息技术提供了可资利用的重要信号源.按照腔量子电动力学系统、超导电路量子电动力学系统和腔–光(电)–力学系统三大类型实验平台,归纳、分析了微波单光子、纠缠微波光子以及压缩微波场和纠缠微波场的产生原理、方法和相关典型实验的进展,并探讨了非经典微波场在量子导航等自由空间传输系统应用中需重点解决的若干关键问题.  相似文献   

12.
We have demonstrated efficient production of triggered single photons by coupling a single semiconductor quantum dot to a three-dimensionally confined optical mode in a micropost microcavity. The efficiency of emitting single photons into a single-mode traveling wave is approximately 38%, which is nearly 2 orders of magnitude higher than for a quantum dot in bulk semiconductor material. At the same time, the probability of having more than one photon in a given pulse is reduced by a factor of 7 as compared to light with Poissonian photon statistics.  相似文献   

13.
Light shining through wall experiments (in the optical as well as in the microwave regime) are a powerful tool to search for light particles coupled very weakly to photons such as axions or extra hidden sector photons. Resonant regeneration, where a resonant cavity is employed to enhance the regeneration rate of photons, is one of the most promising techniques to improve the sensitivity of the next generation of experiments. However, doubts have been voiced if such methods work at very low regeneration rates where on average the cavity contains less than one photon. In this Letter we report on a demonstration experiment using a microwave cavity driven with extremely low power, to show that resonant amplification works also in this regime. In accordance with standard quantum mechanics this is a demonstration that interference also works at the level of less than one quantum. As an additional benefit this experiment shows that thermal photons inside the cavity cause no adverse effects.  相似文献   

14.
The coherent control of single-photon emitters as, e.g., single ions or atoms, is a crucial element for mapping quantum information between light and matter. The possibility of generating entanglement between a photon and the emitter system provides an interface between matter-based quantum memories and photonic quantum communication channels, which is the essential resource for quantum repeaters and other future quantum information applications. To generate entangled atom-photon states, in our experiment, we store a single 87Rb atom in an optical dipole trap. The single-atom/single-photon character is confirmed by the observation of photon antibunching in the detected fluorescence light. The spectral properties of single photons emitted by the atom allowed us to determine the mean kinetic energy of the atom corresponding to 105 μK. We describe a single-atom state analysis method which allowed us to characterize the entanglement between the atom and a single photon emitted in the spontaneous decay. We obtain an entanglement fidelity of 89% that clearly shows the high degree of entanglement in our system and potential for further applications in quantum communication.  相似文献   

15.
Current quantum cryptography systems are limited by the attenuated coherent pulses they use as light sources: a security loophole is opened up by the possibility of multiple-photon pulses. By replacing the source with a single-photon emitter, transmission rates of secure information can be improved. We have investigated the use of single self-assembled InAs/GaAs quantum dots as such single-photon sources, and have seen a tenfold reduction in the multi-photon probability as compared to Poissonian pulses. An extension of our experiment should also allow for the generation of triggered, polarization-entangled photon pairs. The utility of these light sources is currently limited by the low efficiency with which photons are collected. However, by fabricating an optical microcavity containing a single quantum dot, the spontaneous emission rate into a single mode can be enhanced. Using this method, we have seen 78% coupling of single-dot radiation into a single cavity resonance. The enhanced spontaneous decay should also allow for higher photon pulse rates, up to about 3 GHz. Received 8 July 2001 and Received in final form 25 August 2001  相似文献   

16.
The observation of quantum-dot resonance fluorescence enabled a new solid-state approach to generating single photons with a bandwidth approaching the natural linewidth of a quantum-dot transition. Here, we operate in the small Rabi frequency limit of resonance fluorescence--the Heitler regime--to generate subnatural linewidth and high-coherence quantum light from a single quantum dot. The measured single-photon coherence is 30 times longer than the lifetime of the quantum-dot transition, and the single photons exhibit a linewidth which is inherited from the excitation laser. In contrast, intensity-correlation measurements reveal that this photon source maintains a high degree of antibunching behavior on the order of the transition lifetime with vanishing two-photon scattering probability. Generating decoherence-free phase-locked single photons from multiple quantum systems will be feasible with our approach.  相似文献   

17.
采用矩阵形式描述光子的偏振态和大气散射理论, 分析了“BB84协议”中四个不同偏振光子经单次散射后光子的偏振度与前向散射角的关系。发现单次散射不改变偏振光子的总偏振度, 但改变偏振光子的线偏振度与圆偏振度, 尤其对垂直偏振光子的线偏振度与圆偏振度改变明显; 当前向散射角小于0.25 rad时, 四个不同偏振光子的线偏振度基本保持不变, 量子信息仍然保持; 同时分析了大气散射对不同波长的垂直偏振光子线偏振度的影响, 发现长波光子偏振度保持度高。  相似文献   

18.
Optical frequency up-conversion is a technique, based on sum frequency generation in a non-linear optical medium, in which signal light from one frequency (wavelength) is converted to another frequency. By using this technique, near infrared light can be converted to light in the visible or near visible range and therefore detected by commercially available visible detectors with high efficiency and low noise. The National Institute of Standards and Technology (NIST) has adapted the frequency up-conversion technique to develop highly efficient and sensitive single photon detectors and a spectrometer for use at telecommunication wavelengths. The NIST team used these single photon up-conversion detectors and spectrometer in a variety of pioneering research projects including the implementation of a quantum key distribution system; the demonstration of a detector with a temporal resolution beyond the jitter limitation of commercial single photon detectors; the characterization of an entangled photon pair source, including a direct spectrum measurement for photons generated in spontaneous parametric down-conversion; the characterization of single photons from quantum dots including the measurement of carrier lifetime with escalated high accuracy and the demonstration of the converted quantum dot photons preserving their non-classical features; the observation of 2nd, 3rd and 4th order temporal correlations of near infrared single photons from coherent and pseudo-thermal sources following frequency up-conversion; a study on the time-resolving measurement capability of the detectors using a short pulse pump and; evaluating the modulation of a single photon wave packet for better interfacing of independent sources. In this article, we will present an overview of the frequency up-conversion technique, introduce its applications in quantum information systems and discuss its unique features and prospects for the future.  相似文献   

19.
In this paper, an experiment of quantum diffraction of position-momentum entangled photons from a straight sharp edge is presented. Path of a single photon of an entangled pair is partially blocked by a sharp edge whereas the other photon is detected at a stationary location without revealing the which-path information of the other photon. Quantum diffraction pattern of the sharp edge is revealed only in the correlated conditional detection of spatially separated photons and no diffraction pattern is formed in local detections of individual photons. Theoretical analysis of the quantum diffraction of position-momentum entangled photons from a sharp edge is also presented in this paper. Experimental measurements of the quantum diffraction pattern are compared with theoretically calculated quantum diffraction pattern of position-momentum entangled photons.  相似文献   

20.
陶在红  秦媛媛  孙斌  孙小菡 《物理学报》2016,65(13):130301-130301
量子信息在光纤中传输时,会受到光纤损耗、色散、非线性效应等多因素的影响,将产生传输态的演化与能量转移.本文以单模光纤传输方程以及电磁场量子化理论为基础,对单模光纤中基模模场进行量子化处理,推导并建立了考虑损耗、色散、非线性效应后的单光子传输方程.基于微扰法对单光子非线性传输方程进行了求解,给出了稳定解存在的必要条件及其所满足的色散方程.深入讨论了广域光功率随微扰频率的变化关系,并且分析了光纤色散、非线性效应对解的影响.为量子光纤传输系统性能的深入研究奠定了理论基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号