首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
In this paper, we review blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) studies addressing the neural correlates of touch, thermosensation, pain and the mechanisms of their cognitive modulation in healthy human subjects. There is evidence that fMRI signal changes can be elicited in the parietal cortex by stimulation of single mechanoceptive afferent fibers at suprathreshold intensities for conscious perception. Positive linear relationships between the amplitude or the spatial extents of BOLD fMRI signal changes, stimulus intensity and the perceived touch or pain intensity have been described in different brain areas. Some recent fMRI studies addressed the role of cortical areas in somatosensory perception by comparing the time course of cortical activity evoked by different kinds of stimuli with the temporal features of touch, heat or pain perception. Moreover, parametric single-trial functional MRI designs have been adopted in order to disentangle subprocesses within the nociceptive system.

Available evidence suggest that studies that combine fMRI with psychophysical methods may provide a valuable approach for understanding complex perceptual mechanisms and top-down modulation of the somatosensory system by cognitive factors specifically related to selective attention and to anticipation. The brain networks underlying somatosensory perception are complex and highly distributed. A deeper understanding of perceptual-related brain mechanisms therefore requires new approaches suited to investigate the spatial and temporal dynamics of activation in different brain regions and their functional interaction.  相似文献   


2.
The development of computational artifacts to study cross-modal associations has been a growing research topic, as they allow new degrees of abstraction. In this context, we propose a novel approach to the computational exploration of relationships between music and abstract images, grounded by findings from cognitive sciences (emotion and perception). Due to the problem’s high-level nature, we rely on evolutionary programming techniques to evolve this audio–visual dialogue. To articulate the complexity of the problem, we develop a framework with four modules: (i) vocabulary set, (ii) music generator, (iii) image generator, and (iv) evolutionary engine. We test our approach by evolving a given music set to a corresponding set of images, steered by the expression of four emotions (angry, calm, happy, sad). Then, we perform preliminary user tests to evaluate if the user’s perception is consistent with the system’s expression. Results suggest an agreement between the user’s emotional perception of the music–image pairs and the system outcomes, favoring the integration of cognitive science knowledge. We also discuss the benefit of employing evolutionary strategies, such as genetic programming on multi-modal problems of a creative nature. Overall, this research contributes to a better understanding of the foundations of auditory–visual associations mediated by emotions and perception.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号