首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 468 毫秒
1.
增容剂对“壳-核”型共聚物增韧尼龙6的亚微形态与性能的影响汪晓东,金东吉,金日光(北京化工大学61信箱北京100029)关键词尼龙6,“壳-核”型共聚物,增容剂,增韧,亚微相态采用乳液“壳一核”型共聚物增韧各种工程塑料近年来引起广泛的关注l‘,’1....  相似文献   

2.
尼龙1010/马来酸酐接枝聚丙烯共混体系的反应增容   总被引:4,自引:0,他引:4  
李锦春  俞强 《应用化学》1996,13(4):38-40
利用Molau实验、红外光谱、电子扫描显微镜等研究了尼龙1010与马来酸酐接技改性聚丙烯(PP-g-MAH)共混体系的结构,结果表明,尼龙1010分子链中胺基或亚胺基与Pp-g-MAH上的酸酐发生了化学反应,生成的接枝共聚物起到了共混体系增容剂的作用,改善了体系的亲合性。  相似文献   

3.
用于聚合物共混体系的共聚物增容剂   总被引:4,自引:0,他引:4  
在不相容多相聚合物体系中,共聚物增容剂的存在将对共混物的形态结构及力学性能产生极大的影响,它们的作用是增强相间粘合力,减小相表面张力。本文系统论述了共聚物增容剂的分子设计及其分子特性对增容效果的影响,并分别讨论了反应型及非反应型共聚物增容剂的近期发展。  相似文献   

4.
采用体积排斥色谱研究聚(苯乙烯-异成二烯)二嵌段共聚物在选择性溶剂-二氧六环/甲醇混合体系中以PI为核PS为壳的微胶柬形成过程,以及在正庚烷/乙酸异戊酯混合体系中以PS为核PI为壳的微胶束形成过程。讨论了温度、混合溶剂的配比和共聚物分子量对微胶束形成的影响。根据体积排斥色谱图估算了形成微胶束时的表观缔合能和微胶束的表观缔合数.  相似文献   

5.
EAA增容LLDPE/SAN共混物的形态及力学性能   总被引:4,自引:0,他引:4  
采用SEM及力学性能测试等方法,研究了乙烯-丙烯酸共聚物(EAA)含量对其增容线性低密度聚乙烯(LLDPE)/苯乙烯-丙烯腈共聚物(SAN)共混物形态及性能的影响.发现少量的EAA可使共混物中SAN相的相尺寸减小,共混物模量、拉伸强度及断裂伸长率提高.当EAA的含量增加至11.7%时,它在共混物中两相界而的分布达到饱和,即增容剂饱和浓度Cs=11.7%;此时,共混物形态及性能的变化趋势出现明显转折.明显过量的EAA主要起增韧作用.EAA的增容机理为,它与LLDPE组分的非晶区可部分相容,同时又与SAN相存在着分子间特殊作用.  相似文献   

6.
研究了马来酸酐接枝氢化苯乙烯 丁二烯 苯乙烯嵌段共聚物 (MA SEBS)对尼龙 12 12 尼龙 6共混体系形态和性能影响 .结果表明 ,在以尼龙 6为连续相而尼龙 12 12为分散相时 ,MA SEBS加入大大提高了两相间的相容性 ,导致尼龙 12 12分散相的细化 .透射电镜观察表明 ,共混体系形成特殊的“核 壳”结构 ,处在分散相和连续相间的“壳”MA SEBS起到了很好的相容剂的作用 .在尼龙 12 12 尼龙 6为 30 70时 ,仅用 15 %的MA SEBS ,共混体系即获得超高韧性 .  相似文献   

7.
利用聚丙烯等离子体接枝甲基丙烯酸甲酯共聚物(PP-g-PMMA)作增容剂,研究了其在聚丙烯/聚偏氟乙烯(PVDF)共混体系中的作用。增容是通过PMMA与PVDF的偶极-偶极相互作用实现的。接枝共聚物使共混体系的抗张强度和模量均有提高,由不同等离子体处理时间所得的PP-g-PMMA,接枝率在7.7%~300%具有最好的增容效果;而由不同后聚合时间所得的共聚物,接枝率在30%~80%具有最好的增容效果。  相似文献   

8.
本文阐述了橡胶微粒对热塑性树脂的增韧机理,以及核-壳弹性体对塑料共混物性能的影响。其目的是为合成抗冲改性用核-壳弹性体提供参考。  相似文献   

9.
尼龙-6和尼龙-6合金的球晶结构与破坏性能的研究   总被引:2,自引:0,他引:2  
成型冷却速度即结晶速度对单纯尼龙 6和尼龙 6合金的拉伸破坏性能具有不同的影响.结晶速度慢,球晶尺寸大,单纯尼龙 6的拉伸破坏强度高,破坏形变和破坏能量减小;尼龙 6/热塑性聚酰胺弹性体/增容剂合金不仅拉伸破坏强度高,而且破坏形变和破坏能量都有所增加.研究表明,虽然球晶尺寸影响尼龙 6的破坏性能,但球晶的性质即球晶的界面上和片晶 片晶间的非晶部分结构、微小分散粒子的空洞化及相与相之间的界面结合强度是影响尼龙 6破坏性能的主要因素.  相似文献   

10.
聚烯烃/极性聚合物界面的分子状态   总被引:4,自引:0,他引:4  
唐涛  陈辉 《高分子学报》1996,(3):336-342
为了克服高分子共混物界面不易表征的缺点,提出用溶剂选择性溶解方法使界面暴露.结合X-射线光电子能谱(XPS)表征手段,研究了官能化聚合物,接枝型共聚物及带有反应性基团的聚合物作为共混物增容剂时在界面区域的分子状态.实验结果表明,作增容剂时,官能化聚合物在界面区内采取最有利的分子构象,充分发挥增容作用;接枝型共聚物主链、侧链向相应本体聚合物内扩散;而带有反应性基团的聚合物与某个本体聚合物发生反应之前存在反应基团在界面富集的过程  相似文献   

11.
在双螺杆挤出机中制备了环氧官能化的二元乙丙橡胶(gEPR) ,采用红外光谱工作曲线法测量了EPR的接枝率.将环氧官能化的EPR与尼龙6 (Nylon- 6 )熔融共混,并对共混体系的相形态、断裂形貌、增韧机理、力学性能进行了研究.结果表明,gEPR的环氧官能团与Nylon- 6的端羧基和(或)端氨基发生了化学反应生成Nylon -6 co EPR共聚物,该共聚物作为界面改性剂降低了Nylon -6与EPR之间的界面张力,使EPR在Nylon -6基体中均匀、稳定地分散,而且随着EPR接枝率的增加,EPR的粒径尺寸逐渐减小.断面形貌观察发现,与Nylon -6 EPR体系相比,Nyon -6 gEPR共混体系呈现明显的韧性断裂特征.通过对Nylon -6 gEPR共混体系缺口冲击形变区的研究得出EPR增韧Nylon -6的机理是橡胶粒子的空洞化和塑料基体的剪切屈服.力学性能测试表明gEPR的引入显著提高了Nylon -6的缺口冲击强度.  相似文献   

12.
Blends of Nylon-6 and block copolyetheramides with hard segments of Nylon-6 and soft segments of poly(tetramethylene ether) were prepared. The impact strength of the blends was enhanced by the presence of the block copolyetheramides as compared to the Nylon-6. Different block copolyetheramides exhibited different effects on the impact strength which could be described as the difference in compatibility between the Nylon-6 and the Nylon-6 segments of the block copolymers. The difference in compatibility was verified by the investigations of TEM and DSC. As the caprolactam content of the block copolyetheramides increased, the compatibility between the Nylon-6 and the Nylon-6 segments of the block copolymers was enhanced and the blends exhibited a higher impact strength in general. The heat deflection temperature of the blends decreased as the polyether content (depending on the type and the content of the block copolyetheramide) of the blends increased. When the polyether content was ≤ or 20 wt %, a small decrease in heat distortion temperature was found. © 1994 John Wiley & Sons, Inc.  相似文献   

13.
通过熔融共混法制备了苯乙烯-马来酸酐共聚物(SMA)增容的尼龙6(Nylon-6)/ABS共混物.采用TEM、SEM、FTIR等研究了SMA增容的Nylon-6/ABS共混物的相形态与性能.发现在Nylon-6和ABS的简单共混体系中,分散相易聚集,相界面清晰,断裂面光滑,呈脆性断裂,相容性差.加入少量SMA后,共混物由共连续相结构转变为典型的"海-岛"结构,分散相分布均匀,界面粘接程度增加,表明SMA对Nylon-6/ABS体系有显著的增容效果.  相似文献   

14.
Three series of MBS core-shell impact modifiers were prepared by grafting styrene and methyl methacrylate onto PB or SBR seed latex in emulsion polymerization. All the MBS modifiers were designed to have the same total chemical composition, and MMA/Bd/St equals 30/42/28, which is a prerequisite for producing transparent blends with PVC. Under this composition, there were three different ways of arrangement for styrene in MBS, which led to the different structure of MBS modifier. The concentration of MBS in PVC/MBS blends was kept at a constant value of 20 wt.%. The effects of arrangement of St in MBS on the mechanical and optical properties of PVC/MBS blends were studied. The notched Izod impact test results showed that the MBS with a PB homopolymer core grafted with St had a lowest brittle-ductile transition (BDT) temperature and BDT temperature increased with the amount of St copolymerized with Bd in the core of MBS. The transparency of blends also increased with the amount of St copolymerized with Bd in the core. TEM results showed that the arrangement of St in MBS influenced the deformation behavior. Two deformation modes were observed in the blends: cavitation and shear yielding. When all St was grafted onto the PB rubber, both cavitation and debonding were observed, which relieve the triaxial tension and promote the shear yielding of the PVC matrix. When all St was copolymerized with Bd in MBS, no cavitation could be observed and only the shear yielding of the PVC matrix took place.  相似文献   

15.
The effects of nylon 6 matrix viscosity and a multifunctional epoxy interfacial modifier on the notched impact strength of the blends of nylon 6 with a maleic anhydride modified polyethylene‐octene elastomer/semi‐crystalline polyolefin blend (TPEg) were studied by means of morphological observation, and mechanical and rheological tests. Because the viscosity of the TPEg is much higher than that of nylon 6, an increase in the viscosity of nylon 6 reduces the viscosity mismatch between the dispersed phase and the matrix, and increases notched impact strength of the blends. Moreover, addition of 0.3 to 0.9 phr of the interfacial modifier leads to a finer dispersion of the TPEg and greatly improves the notched impact strength of the nylon 6/TPEg blends. This is because the multi‐epoxy interfacial modifier can react with nylon 6 and the maleated TPEg. The reaction with nylon 6 increases the viscosity of the matrix while the coupling reaction at the interface between nylon 6 and the maleated TPEg leads to better compatibilization. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2664–2672, 1999  相似文献   

16.
A series of methyl methacrylate‐butadiene‐styrene (MBS) core–shell impact modifiers were prepared by grafting styrene (St) and methyl methacrylate (MMA) onto polybutadiene (PB) or styrene‐butadiene rubber (SBR) seed latex in emulsion polymerization. All the MBS modifiers were designed to have the same total chemical composition, and Bd/St/MMA equaled 39/31/30, which was a prerequisite for producing transparent blends with poly(MMA)/styrene‐acrylonitrile (PMMA/SAN) matrix copolymers. Under this composition, different ways of arrangement for styrene in MBS led to the different structure of MBS modifier. The concentration of PB or SBR rubber of MBS in PMMA/SAN/MBS blends was kept at a constant value of 15 wt.%. The effects of arrangement of St in MBS on the mechanical and optical properties of PMMA/SAN/MBS blends were investigated. The results indicated that Izod impact strength of PMMMA/SAN/MBS blend with the amount of St grafted on core in MBS was higher than that of blend with the amount of St copolymerized with Bd in core of MBS, while the transparency of blend is opposite. From transmission electron microscopy, it was found that the arrangement of St in MBS influenced the dispersion of blend, which led to different toughness. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Two ionomers, ethylene-methacrylic acid copolymer ionized with sodium cation (EMA-Na) and zinc cation (EMA-Zn), were employed as impact modifiers to prepare blends with polyoxymethylene (POM) via a melt extrusion. A copolymer of methyl methacrylate-styrene-butadiene (MBS) used as a co-impact modifier was also incorporated into the blends. The mechanical properties, thermal properties, morphology, and rheology were studied. A moderate toughening was observed for POM/ionomer binary blends, which was attributable to the rubbery natural and good adhesion of the ionomers. EMA-Zn exhibited a much better toughening effect than EMA-Na because of its higher elasticity and stronger interaction with POM. The incorporation of the ionomers into POM/MBS blends resulted in an improvement of mechanical properties, which was attributable to the compatibilizing effect of ionomer on POM/MBS blending system. The observation of scanning electron microscopy demonstrated that the finer phase domains were caused by incorporation of ionomers, which, acting as a compatibilizer as well as an impact modifier, reduced the interfacial tension and improved the interfacial adhesion between the phases. Differential scanning calorimetry investigation indicated that the presence of ionomer in the blends disturbed the crystallization of POM and resulted in a decrease in the crystallinity of POM. The evaluation of melt flow index revealed an increase in viscosity of the blends by incorporation of the ionomers, which was caused the ionic interaction between POM and the ionomers.  相似文献   

18.
杨卉  谢续明 《高分子学报》2000,19(2):215-218
研究了不同分子量的环氧预聚物对双酚A型双官能团环氧树脂 /聚砜 (PSF) /固化剂 (二氨基二苯基砜 ,DDS)体系相分离结构的影响 .通过红外光谱 (FTIR)和动态热机械分析 (TMA)对反应转化率、玻璃化温度以及固化温度的关系的研究 ,表明环氧预聚物分子量较小时 ,凝胶点和玻璃化是影响相结构的关键因素 ;环氧分子量较大时 ,环氧扩链后粘度的变化则成为抑制相分离的重要因素 .电子显微镜 (SEM)结果表明改变环氧预聚物分子量可以达到调控相结构的目的 ,随着预聚物分子量的增大 ,体系的微区尺寸减小 .  相似文献   

19.
Inverse gas chromatography (IGC) has been used to study the Lewis acid-base properties of a technologically and commercially important core-shell type elastomer (MBS rubber). The parameters determined were the dispersive component of the surface tension, the surface free energy, the enthalpy and the entropy of adsorption of polar and apolar probes, the surface Lewis acidity constant (Ka), and the surface Lewis basicity constant (Kb). The results show that the MBS rubber is amphoteric but strongly Lewis basic. It is weakly Lewis acidic. The results are in accord with the analysis of the molecular structure of PMMA, the shell component of this impact modifier (IM). The interactivity of this elastomer with the remaining materials in multicomponent polymeric systems is expected to be strongly influenced by the particular surface energetic properties of the MBS rubber. The results presented would contribute to the interpretation, forecast and optimization of the adhesion properties and phase preferences shown by this impact modifier when incorporated in such complex polymeric systems as polymer blends and composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号