首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
The enthalpy of solution (Delta(solv)H(m)) and solubility of 1,4-naphthoquinone in CO(2) + n-pentane were measured at 308.15 K in the critical region of the binary fluid. In order to study the effect of phase behavior of the mixed solvent on Delta(solv)H(m), the experiments were carried out in the supercritical (SC) and subcritical region of the binary solvent. The density of the mixed solvent in different conditions was determined. The isothermal compressibility (K(T)) of the mixed solvent, and the partial molar volume (V(n-pentane)) of n-pentane in the solution were calculated. It was demonstrated that the Delta(solv)H(m) was negative in all conditions. Delta(solv)H(m) is nearly independent of pressure or density in all the solvents in a high-density region, in which compressibility of the solvent is very small; this indicates that the intermolecular interaction between the solvent and the solute is similar to that for liquid solutions. It is very interesting that Delta(solv)H(m) in the mixed SC fluid differs from the Delta(solv)H(m) in mixed subcritical fluids. The absolute value of Delta(solv)H(m) in the mixed SC fluid is close to that in pure SC CO(2) in the high-density region, and is much lower than that in pure SC CO(2) in the low-density region. In the mixed subcritical fluids, the Delta(solv)H(m) is also close to that in the pure CO(2) in the high-density region. However, at the same density, the absolute value of Delta(solv)H(m) in the binary subcritical fluid is larger than that in pure CO(2) in the high-compressible region of the mixed solvent. The main reason for this is that the degree of clustering in the SC solutions is small at the density in which the degree of clustering is large in the subcritical solutions. It can be concluded that solubility enhancement by n-pentane in the mixed SC fluid is entropy driven. In contrast, the solubility enhancement by n-pentane in subcritical fluids is enthalpy driven. The intermolecular interaction in the SC solutions and subcritical solutions can be significantly different even if their densities are the same.  相似文献   

2.
In this article, we demonstrated by the application of time-resolved spectroscopy, X-ray structural analysis and other spectroscopic techniques that 9-Anthrylsilanes exhibits sigma,pi-interaction between 9-anthryl group and the Si-Si linkage in anthryl-disilanes, ASi(2), ASi(2)A, and ASi(3)A which does not occur in the analogous alkyl derivatives as well as the pyrenylsilane derivatives, in spite of the fact that the 0,0-band of PSi(2) is about 12.8 KJ more energetic than that of ASi(2) (Figure 1). More interestingly, the X-ray structural studies reveal that ASi(3)A exists in a butterfly-like structure in agreement with other spectroscopic analyses that the two anthryl groups do not interact in their excited states, while those in ASi(2)A do. This is in contrast to the analogous pyrenylsilanes; the trisilanes exhibits a stronger excimer interaction than that of disilane.(10b) Our results show that the sigma,pi-interactions in ASi(3)A has imparted rigidity to the tri-silyl linkage. Potential applications of anthrylsilanes in material sciences will be explored.(5) This work provides evidence that sigma,pi-interaction between the 9-anthryl group and disilyl linkage does play an important role in the properties of disilanes. We attribute this enhanced sigma,pi-interaction to the nature of the lowest excited state (S(1) state) of anthracenes, the L(a) transition, which has a much higher oscillator strength than the S(1)L(b)-transition of pyrenes (Figure 1). We define the interaction in anthracene as a sigma,pi(S(1,)L(a)) interaction. This interaction lends a substantial barrier to the Si-Si bond with the excited anthryl nucleus in anthrylsilanes. The scope and potential applications of this phenomenon are discussed.  相似文献   

3.
Direct intramolecular cation-pi interaction between phenyl and pyridinium moieties in 1a(+) has been experimentally evidenced through pH-dependent (1)H NMR titration. The basicity of the pyridinyl group (pK(a) 2.9) in 1a can be measured both from the pH-dependent chemical shifts of the pyridinyl protons as well as from the protons of the neighboring phenyl and methyl groups as a result of electrostatic interaction between the phenyl and the pyridinium ion in 1a(+) at the ground state. The net result of this nearest neighbor electrostatic interaction is that the pyridinium moiety in 1a becomes more basic (pK(a) 2.92) compared to that in the standard 2a (pK(a) 2.56) as a consequence of edge-to-face cation (pyridinium)-pi (phenyl) interaction, giving a free energy of stabilization (DeltaDeltaG(o)pKa) of -2.1 kJ mol(-1). The fact that the pH-dependent downfield shifts of the phenyl and methyl protons give the pK(a) of the pyridine moiety of 1a also suggests that the nearest neighbor cation (pyridinium)-pi (phenyl) interaction also steers the CH (methyl)-pi (phenyl) interaction in tandem. This means that the whole pyridine-phenyl-methyl system in 1a(+) is electronically coupled at the ground state, cross-modulating the physicochemical property of the next neighbor by using the electrostatics as the engine, and the origin of this electrostatics is a far away point in the molecule-the pyridinyl-nitrogen. The relative chemical shift changes and the pK(a) differences show that the cation (pyridinium)-pi (phenyl) interaction is indeed more stable (DeltaDeltaG(o)pKa = -2.1 kJ mol(-1)) than that of the CH (methyl)-pi (phenyl) interaction (DeltaDeltaG(o)pKa = -0.8 kJ mol(-1)). Since the pK(a) of the pyridine moiety in 1a is also obtained through the pH-dependent shifts of both phenyl and methyl protons, it suggests that the net electrostatic mediated charge transfer from the phenyl to the pyridinium and its effect on the CH (methyl)-pi (phenyl) interaction corresponds to DeltaG(o)pKa of the pyridinium ion (approximately 17.5 kJ mol(-1)), which means that the aromatic characters of the phenyl and the pyridinium rings in 1a(+) have been cross-modulated owing to the edge-to-face interaction proportional to this DeltaG(o)pKa change.  相似文献   

4.
The structure of the complexes of the type [Ni(L)(H(2)O)(2)](2+), where L is an amino alcohol ligand, L = N,N'-bis(2-hydroxyethyl)-ethane-1,2-diamine (BHEEN), N,N'-bis(2-hydroxycyclohexyl)-ethane-1,2-diamine (Cy(2)EN), and N,N'-bis(2-hydroxycyclopentyl)-ethane-1,2-diamine, (Cyp(2)EN) were investigated at the X3LYP/6-31+G(d,p) level of theory both in the gas phase and in solvent (CPCM model) to gain insight into factors that control the experimental log K(1) values. We find that (i) analyses based on Bader's quantum theory of atoms in molecules (QTAIM) are useful in providing significant insight into the nature of metal-ligand bonding and in clarifying the nature of weak "nonbonded" interactions in these complexes and (ii) the conventional explanation of complex stability in these sorts of complexes (based on considerations of bond lengths, bite angles and H-clashes) could be inadequate and indeed might be misleading. The strength of metal-ligand bonds follows the order Ni-N > Ni-OH ≥ Ni-OH(2); the bonds are predominantly ionic with some covalent character decreasing in the order Ni-N > Ni-OH > Ni-OH(2), with Ni-OH(2) being close to purely ionic. We predict that the cis complexes are preferred over the trans complexes because of (i) stronger bonding to the alcoholic O-donor atoms and (ii) more favorable intramolecular interactions, which appear to be important in determining the conformation of a metal-ligand complex. We show that (i) the flexibility of the ligand, which controls the Ni-OH bond length, and (ii) the ability of the ligand to donate electron density to the metal are likely to be important factors in determining values of log K(1). We find that the electron density at the ring critical point of the cyclopentyl moieties in Cyp(2)EN is much higher than that in the cyclohexyl moieties of Cy(2)EN and interpret this to mean that Cyp(2)EN is a poorer donor of electron density to a Lewis acid than Cy(2)EN.  相似文献   

5.
Fe-only hydrogenases are enzymes that catalyze dihydrogen production or oxidation, due to the presence of an unusual Fe(6)S(6) cluster (the so-called H-cluster) in their active site, which is composed of a Fe(2)S(2) subsite, directly involved in catalysis, and a classical Fe(4)S(4) cubane cluster. Here, we present a hybrid quantum mechanical and molecular mechanical (QM/MM) investigation of the Fe-only hydrogenase from Desulfovibrio desulfuricans, in order to unravel key issues regarding the activation of the enzyme from its completely oxidized inactive state (Hoxinact) and the influence of the protein environment on the structural and catalytic properties of the H-cluster. Our results show that the Fe(2)S(2) subcluster in the Fe(II)Fe(II) redox state - which is experimentally observed for the completely oxidized form of the enzyme - binds a water molecule to one of its metal centers. The computed QM/MM energy values for water binding to the diferrous subsite are in fact over 70 kJ mol(-1); however, the affinity toward water decreases by 1 order of magnitude after a one-electron reduction of H(ox)(inact), thus leading to the release of coordinated water from the H-cluster. The investigation of a catalytic cycle of the Fe-only hydrogenase that implies formation of a terminal hydride ion and a di(thiomethyl)amine (DTMA) molecule acting as an acid/base catalyst indicates that all steps have reasonable reaction energies and that the influence of the protein on the thermodynamic profile of H(2) production catalysis is not negligible. QM/MM results show that the interactions between the Fe(2)S(2) subsite and the protein environment could give place to structural rearrangements of the H-cluster functional for catalysis, provided that the bidentate ligand that bridges the iron atoms in the binuclear subsite is actually a DTMA residue.  相似文献   

6.
Relatively little is known about the reaction chemistry of the human defense factor hypothiocyanite (OSCN(-)) and its conjugate acid hypothiocyanous acid (HOSCN), in part because of their instability in aqueous solutions. Herein we report that HOSCN/OSCN(-) can engage in a cascade of pH- and concentration-dependent comproportionation, disproportionation, and hydrolysis reactions that control its stability in water. On the basis of reaction kinetic, spectroscopic, and chromatographic methods, a detailed mechanism is proposed for the decomposition of HOSCN/OSCN(-) in the range of pH 4-7 to eventually give simple inorganic anions including CN(-), OCN(-), SCN(-), SO(3)(2-), and SO(4)(2-). Thiocyanogen ((SCN)(2)) is proposed to be a key intermediate in the hydrolysis; and the facile reaction of (SCN)(2) with OSCN(-) to give NCS(═O)SCN, a previously unknown reactive sulfur species, has been independently investigated. The mechanism of the aqueous decomposition of (SCN)(2) around pH 4 is also reported. The resulting mechanistic models for the decomposition of HOSCN and (SCN)(2) address previous empirical observations, including the facts that the presence of SCN(-) and/or (SCN)(2) decreases the stability of HOSCN/OSCN(-), that radioisotopic labeling provided evidence that under physiological conditions decomposing OSCN(-) is not in equilibrium with (SCN)(2) and SCN(-), and that the hydrolysis of (SCN)(2) near neutral pH does not produce OSCN(-). Accordingly, we demonstrate that, during the human peroxidase-catalyzed oxidation of SCN(-), (SCN)(2) cannot be the precursor of the OSCN(-) that is produced.  相似文献   

7.
The photophysical properties of two typical cyanine dyes [3,3'-diethyl-9-methyl-thiacarbocyanine iodide (dye A) and anhydro-3,3'-disulfopropyl-5,5'-diphenyl-9-ethyloxacarbocyanine hydroxide (dye B)] in the absence and presence of TiO(2) colloids have been investigated by UV-visible spectroscopy, (1)H-NMR spectroscopy, fluorescence spectroscopy, fluorescence lifetime measurements, and ESR measurements. It was found from the absorption spectra and NMR results that there are two isomers in the ground state of these dyes. Steady-state fluorescence spectra show that the fluorescence intensities of dye A and dye B are enhanced and quenched by TiO(2) colloids, respectively. Time-resolved fluorescence lifetime measurements indicate that the lifetimes of dye A and dye B in the presence of TiO(2) colloids are longer and shorter than those obtained in the absence of TiO(2) colloids, respectively. ESR measurements demonstrate that the electron transfer efficiency from (1)dye B* to the conduction band of TiO(2) is much larger than that from (1)dye A* to the conduction band of TiO(2). The different fluorescence behavior of dye A and dye B can be intepreted in terms of whether phi(Tr,nr)(0)-phi(Tr,nr) (the reduction of the quantum yield for radiationless transition in the excited singlet state (1)dye* caused by the TiO(2) colloids) is larger or smaller than phi(ET) (the quantum yield of electron transfer from (1)dye* to the conduction band of TiO(2) colloids).  相似文献   

8.
Streptococcus pneumoniae LTA is a highly complex glycophospholipid that consists of nine carbohydrate residues: three glucose, two galactosamine and two 2‐acetamino‐4‐amino‐2,4,6‐trideoxygalactose (AATDgal) residues that are each differently linked, one ribitol and one diacylated glycerol (DAG) residue. Suitable building blocks for the glucose and the AATDgal residues were designed and their synthesis is described in this paper. These building blocks permitted the successful synthesis of the core structure Glcβ(1‐3)AATDgalβ(1‐3)Glcα(1‐O)DAG in a suitably protected form for further chain extension ( 1 b , 1 c ) and as unprotected glycolipid ( 1 a ) that was employed in biological studies. These studies revealed that 1 a as well as 1 lead to interleukin‐8 release, however not via TLR2 or TLR4 as receptor.  相似文献   

9.
The mechanism of interaction of vinblastin sulphate (VBS) with bovine serum albumin (BSA) has been reported. Association constant for VBS-BSA binding was found to be 3.146+/-0.06 x 10(4) M(-1). Stern-Volmer analysis of fluorescence quenching data showed that the fraction of fluorophore (protein) accessible to the quencher (drug) was close to unity indicating thereby that both tryptophan residues of BSA are involved in drug-protein interaction. The rate constant for quenching, greater than 10(10) M(-1) S(-1), indicated that the drug-binding site is in close proximity to tryptophan residues of BSA. Binding studies in the presence of an hydrophobic probe, 8-anilino-1-naphthalein-sulphonic acid, sodium salt (ANS) indicated that there is hydrophobic interaction between VBS and probe and they do not share common sites in BSA. Thermodynamic parameters obtained from data at different temperatures showed that the binding of VBS to BSA involves predominant hydrophobic forces. The effects of some additives and paracetamol on binding of VBS-BSA have also been investigated. The CD spectrum of BSA in presence of VBS shows that the binding of VBS leads to change in the helicity of BSA.  相似文献   

10.
Both steady state and time resolved spectroscopic measurements reveal that the prime process involved in quenching mechanism of the lowest excited singlet (S1) and triplet (T1) states of the well known electron acceptor 9-Cyanoanthracene (9CNA) in presence of 5,6,7,8-tetrahydro-1-naphthol (TH1N) or 5,6,7,8-tetrahydro-2-naphthol (TH2N) is H-bonding interaction. It has been confirmed that the fluorescence of 9CNA is not at all affected in presence of 5,6,7,8-tetrahydro-2-methoxy naphthalene (TH2MN) both in non-polar n-heptane (NH) and highly polar acetonitrile (ACN) media. This indicates that the H-bonding interaction is crucial for the occurrence of the quenching phenomenon observed in the present investigations with TH1N (or TH2N) donors and 9CNA acceptor. In ACN solvent both contact ion-pair (CIP) and solvent-separated (or dissociated) ions are formed due to intermolecular H-bonding interactions in the excited electronic states (both singlet and triplet). In NH environment due to stronger H-bonding interactions, the large proton shift within excited charge transfer (CT) or ion-pair complex, 1 or 3(D+-H...A-), causes the formation of the neutral radical, 3(D+H-A)*, due to the complete detachment of the H-atom. It is hinted that both TH1N and TH2N due to their excellent H-bonding ability could be used as antioxidants.  相似文献   

11.
The cluster [W(3)S(4)H(3)(dmpe)(3)](+) (1) (dmpe=1,2-bis(dimethylphosphino)ethane) reacts with HX (X=Cl, Br) to form the corresponding [W(3)S(4)X(3)(dmpe)(3)](+) (2) complexes, but no reaction is observed when 1 is treated with an excess of halide salts. Kinetic studies indicate that the hydride 1 reacts with HX in MeCN and MeCN-H(2)O mixtures to form 2 in three kinetically distinguishable steps. In the initial step, the W-H bonds are attacked by the acid to form an unstable dihydrogen species that releases H(2) and yields a coordinatively unsaturated intermediate. This intermediate adds a solvent molecule (second step) and then replaces the coordinated solvent with X(-) (third step). The kinetic results show that the first step is faster with HCl than with solvated H(+). This indicates that the rate of protonation of this metal hydride is determined not only by reorganization of the electron density at the M-H bonds but also by breakage of the H-X or H(+)-solvent bonds. It also indicates that the latter process can be more important in determining the rate of protonation.  相似文献   

12.
Usefulness of gas chromatograph-mass spectrometer-computer system (GC-MS-CPU) not only for measurement of specific activities of 14C-labelled compounds in a mixture but also for evaluation of 14C-labelled compounds in terms of examining their purities and elucidating chemical structures of the impurities was proved. A sample of methyl 2-(p-chlorophenyl-14Cn)-3-methylbutylate (III) synthesized from p-chlorophenyl-14Cn-acetonitrile (VI) was analyzed by GC-MS-CPU, and it was found that the labelled compound was contaminated with a small amount of the corresponding m-isomer (IV) having a very high specific activity. Further examination suggested that the contaminating m-isomer (IV) originated from m-chlorophenyl-14Cn-acetonitrile (IX) which had already contaminated in the starting material (VI), and also that cyanomethylation of p-dichlorobenzene-14Cn (VIII) by benzene-type reaction resulted in producing a mixture of p- and m-chlorophenyl-14Cn-acetonitriles (VI, IX).  相似文献   

13.
We attempted to make the rapidly dissolving tablet (Tab) containing solid dispersion particles (SD) with indomethacin (IMC) and porous silica (Sylysia350) as carrier prepared by using spray-drying technique. Rapidly dissolving tablet was formulated with mannitol as a diluent and low substituted hydroxypropylcellulose (L-HPC) or partly pre-gelatinized starch (PCS) as a disintegrant. The percent dissolved from Tab (SD) was higher than that of tablet containing physical mixture (PM) at 20 min. Nearly 100% of drug in Tab (SD) was dissolved within 60 min, while the drug dissolution of Tab (PM) was not completed at the same time period. In addition, the tensile strength of Tab (SD) was much higher than that of Tab (PM). Adding L-HPC in Tab (SD) (Tab (SD-L-HPC)), the percent dissolved from Tab (SD-L-HPC) at 5 min became much higher than that from Tab (SD). The dissolution profile of IMC from Tab (SD-L-HPC) was almost the same irrespective of the compression pressure, while the tensile strength of tablet increased with increasing the compression pressure. In comparing the compaction property of these tablets by observing the ratio of residual die wall pressure (RDP) to maximum die wall pressure (MDP) (RDP/MDP), it was found that addition of L-HPC in the tablet formulation improved compactibility. In case that PCS was formulated as disintegrant, Tab (SD-PCS), similar improvement in the dissolution profile and tensile strength was observed, though the dissolution rate of IMC from Tab (SD-PCS) was slightly lower than that from Tab (SD-L-HPC) irrespective of the compression pressure.  相似文献   

14.
The bacterial chemotaxis protein of Desulfovibrio vulgaris DcrH (DcrH-Hr) functions as an O(2)-sensing protein. This protein has a hemerythrin-like domain that includes a nonheme diiron center analogous to the diiron center of the hemerythrin (Hr) family. Interestingly, the O(2) affinity of DcrH-Hr is 3.3 × 10(6) M(-1), a value 25-fold higher than that of the Pectinaria gouldii Hr. This high affinity arises from the fast association of the O(2) ligand with DcrH-Hr (k(on) = 5.3 × 10(8) M(-1) s(-1)), which is made possible by a hydrophobic tunnel that accelerates the passage of the O(2) ligand to the diiron site. Furthermore, the autoxidation kinetics indicate that the rate of autoxidation of DcrH-Hr is 54-fold higher than that of P. gouldii Hr, indicating that the oxy form of DcrH-Hr is not stable toward autoxidation. More importantly, a mixed-valent state, semimet(R), which was spectroscopically observed in previous Hr studies, was found to be stable for over 1 week and isolable in the case of DcrH-Hr. The high-resolution crystal structures of the semimet(R)- (1.8 ?) and met-DcrH-Hr (1.4 ?) indicate that the semimet(R)- and met-DcrH-Hr species have very similar coordination geometry at the diiron site.  相似文献   

15.
A unique collision-induced dissociation pattern was observed for protonated polyproline peptides of length n in which y(n-2) and/or y(n-4) ions were formed in much higher abundance than any other product ions. Cleavage occurs only at every other amide bond, such that product ions are formed only from the losses of even numbers of proline residues. Exclusive losses of even numbers of proline residues were not observed from sodiated peptides. Further study of the tandem mass spectrometry (MS/MS) patterns of protonated proline-rich peptides showed that the substitution of alanine in the second position of polyproline peptides did not prevent the dominant formation of y(n-2) and y(n-4) ions. The loss of ProAla to form the y(8) ion from (ProAlaPro(8)NH(2)+H)(+) was as abundant as the loss of ProPro from (Pro(10)NH(2)+H)(+). However, modification of the peptides that presumably affected the location of the proton on the peptide did alter the MS/MS spectra. Pro(10) and Pro(5) with blocked N-termini or with arginine substituted for the first proline residue did not form abundant y(n-2) or y(n-4) ions. MS(3) and double resonance experiments showed that dissociation of intermediate y(n) product ions can produce y(n-2) ions, but are not necessary dissociation pathway intermediates. This analysis suggests that the ionizing proton must be located at the N-terminus for the peptide ion to dissociate in this manner.  相似文献   

16.
Three series of ethynylhelicene oligomers with different side chains were synthesized: (P)-bD-n (n = 2-6) with branched alkyloxycarbonyl side chains; (P)-S-n (n = 2-7) with decylsulfanyl side chains; and (P)-DF-n (n = 4, 6, 8, 10) with alternating decyloxycarbonyl and perfluorooctyl side chains. The double helix formation of these side chain derivatives was compared to that of (P)-D-n with decyloxycarbonyl side chains. CD, UV-vis, and vapor pressure osmometry (VPO) studies showed that (P)-bD-n formed double helices as well as (P)-D-n. CD studies in trifluoromethylbenzene at different temperatures and concentrations indicated that the stability of the aggregate of (P)-bD-6 was similar to that of (P)-D-6. Bulkiness of side chains had little effect on aggregation, which indicated that π-π interactions of the aromatic moiety were essential for double helix formation. (P)-S-n were random coils in all solvents examined except in trifluoromethylbenzene. Whereas (P)-D-7 formed a double helix at 1 × 10(-3) M in toluene, (P)-S-7 was a random coil. This result indicated that the double helix forming ability of (P)-S-n was substantially lower than that of (P)-D-n. Based on the previous observation that (P)-F-n formed a more stable double helix than (P)-D-n, the order of stability may be summarized as follows: (P)-F-n > (P)-D-n and (P)-bD-n >(P)-S-n. The lower stability of (P)-S-n compared to that of (P)-F-n was ascribed to the softness and/or the electron-rich nature at the m-phenylene moiety. (P)-DF-n did not form a stable double helix. It was speculated that a regular alternating arrangement of soft/hard or electron-rich/deficient moieties is important for stable double helix formation. Side chains of ethynylhelicene oligomers can play significant roles in determining the stability of double helices.  相似文献   

17.
Laboratory- and rotating- frame spin-lattice relaxation times (T(1) and T(1rho)) of (1)H and (13)C in lyophilized poly(vinylpyrrolidone) (PVP) and methylcellulose (MC) are determined to examine feasibility of using T(1) and T(1rho) as a measure of molecular motions on large time scales related to the storage stability of lyophilized formulations. The T(1rho) of proton and carbon was found to reflect the mobility of PVP and MC backbones, indicating that it is useful as a measure of large-time-scale molecular motions. In contrast to the T(1rho), the T(1) of proton measured in the same temperature range reflected the mobility of PVP and MC side chains. The T(1) of proton may be useful as a measure of local molecular motions on a smaller-time-scale, although the measurement is interfered by moisture under some conditions. The temperature dependence of T(1) and T(1rho) indicated that methylene in the MC molecule had much higher mobility than that in the dextran molecule, also indicated that methylene in the PVP side chain had a higher mobility than that in the MC side chain.  相似文献   

18.
The mechanism of the reaction of the sulfur dioxide (SO(2)) with four stabilized Criegee intermediates (stabCI-CH(3)-OO, stabCI-OO, stabCIx-OO, and stabCH(2)OO) produced via the ozonolysis of limonene have been investigated using ab initio and DFT (density functional theory) methods. It has been shown that the intermediate adduct formed by the initiation of these reactions may be followed by two different reaction pathways such as H migration reaction to form carboxylic acids and rearrangement of oxygen to produce the sulfur trioxide (SO(3)) from the terminal oxygen of the COO group and SO(2). We found that the reaction of stabCI-OO and stabCH(2)OO with SO(2) can occur via both the aforementioned scenarios, whereas that of stabCI-CH(3)-OO and stabCIx-OO with SO(2) is limited to the second pathway only due to the absence of migrating H atoms. It has been shown that at the CCSD(T)/6-31G(d) + CF level of theory the activation energies of six reaction pathways are in the range of 14.18-22.59 kcal mol(-1), with the reaction between stabCIx-OO and SO(2) as the most favorable pathway of 14.18 kcal mol(-1) activation energy and that the reaction of stabCI-OO and stabCH(2)OO with SO(2) occurs mainly via the second reaction path. The thermochemical analysis of the reaction between SO(2) and stabilized Criegee intermediates indicates that the reaction of SO(2) and stabilized Criegee intermediates formed from the exocyclic primary ozonide decomposition is the main pathway of the SO(3) formation. This is likely to explain the large (~100%) difference in the production rate in the favor of the exocyclic compounds observed in recent experiments on the formation of H(2)SO(4) from exocyclic and endocyclic compounds.  相似文献   

19.
A basic understanding related to the immobilization of chromium by bacteria is essential for chromate pollutant remediation in the environment. In this work, we studied the Cr(VI) uptake mechanism of living Ochrobactrum anthropi and the influence of a bacterial culture medium on the Cr-immobilization process. It was found that the Cr-immobilization ratio of bacteria in Tris-HCl buffer is higher than in LB medium. X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR) analysis revealed that the chromium accumulated on bacteria were mostly in Cr(III) states. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) observations showed that noticeable Cr(III) precipitates were accumulated on bacterial surfaces. AFM roughness analysis revealed that the surface roughness of bacteria increased greatly when the bacteria-Cr(VI) interaction was in Tris-HCl buffer rather than in LB solution. Transmission electron microscopy (TEM) thin section analysis coupled with energy-dispersive X-ray spectroscopy showed that Cr(III) is also distributed in bacterial inner portions. A chromium-immobilization mechanism considering the participation of both bacterial inner portions and bacterial surfaces of living Ochrobactrum anthropi was proposed, whereas the bacterial surface was the dominant part of the immobilization of Cr(III). This work also proved that the control of Cr immobilization by living Ochrobactrum anthropi could be achieved via adjusting the bacterial culture medium.  相似文献   

20.
Hevein, a protein found in Hevea brasiliensis, has a CRD domain, which is known to bind chitin and GlcNAc-containing oligosaccharides. By using NMR and molecular modeling as major tools we have demonstrated that trisaccharides containing GalNAc and ManNAc residues are also recognized by hevein domains. Thus far unknown trisaccharides GlcNAcbeta(1-->4)GlcNAcbeta(1-->4)ManNAc (1) and GalNAcbeta(1-->4)GlcNAcbeta(1-->4)ManNAc (2) were synthesized with the use of beta-N-acetylhexosaminidase from Aspergillus oryzae. This method is based on the rather unique phenomenon that some fungal beta-N-acetylhexosaminidases cannot hydrolyze disaccharide GlcNAcbeta(1-->4)ManNAc (5) contrary to chitobiose GlcNAcbeta(1-->4)GlcNAc (4) that is cleaved and, therefore, cannot be used as an acceptor for further transglycosylation. Both trisaccharides 1 and 2 were prepared by transglycosylation from disaccharidic acceptor in good yields ranging from 35% to 40%. Our observations strongly indicate that the present nature of the modifications of chitotriose (GlcNAcbeta(1-->lcNAcbeta(1-->4)GlcNAc, 3) at either the non-reducing end (GalNAc instead of GlcNAc) or at the reducing end (ManNAc instead of GlcNAc) do not modify the mode of binding of the trisaccharide to hevein. The association constant values indicate that chitotriose (3) binding is better than that of 1 and 2, and that the binding of (with ManNAc at the reducing end) is favored with respect to that of 2 (with ManNAc at the reducing end with a non-reducing GalNAc moiety).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号