首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The photolysis of isomeric pairs of p,p'-dialkyl-substituted phenyl benzyl ketones adsorbed on MFI zeolites has been investigated by EPR spectroscopy. Photolysis produces persistent "benzoyl type" and "benzyl type" radicals. The dominant persistent radical produced by photolysis of any particular isomeric pair depends on the length and position of the p-alkyl chain. The results are attributed to supramolecular stereoisomers resulting from preferential adsorption of the longer alkyl chain into the pores of the zeolite.  相似文献   

2.
Most molecular and supramolecular organic photochemical reactions involve paramagnetic reactive intermediates (such as molecular triplet states, triplet radical pairs, and free radicals). In a number of cases these species are created with "anomalous" spin populations which are far from thermal equilibrium. Such paramagnetic species are said to be "spin polarized" and may be observed directly by time-resolved electron paramagnetic resonance (TREPR). The TREPR technique can be applied to exploit spin polarization, which, in addition to providing an enormous signal to noise enhancement, also reveals the mechanisms involved in photochemical reactions. TREPR spectroscopy provides a means of tracking the reaction of radicals with molecules and the nonreactive interactions of radicals with other radicals in real time. The latter interactions provide a systematic investigation of supramolecular interactions of geminate radicals in micelles.  相似文献   

3.
Over the past two decades, the photolytic reactions of dibenzyl ketones sorbed on zeolites have been investigated. The reported results are consistent with a supramolecular model that takes into account the physical and chemical nature of the structure of the zeolites and their effect on the reactive radical intermediates produced by photolysis of adsorbed molecules. The model incorporates various phenomena such as surface coverage, external and internal sorption, surface diffusion, radical sieving, and the resulting product distributions. This account reports direct evidence for the validation of the model through FT-IR spectroscopy and through a new method for "titrating" the binding sites via EPR spectroscopy. It is shown that it is possible to adjust and modulate the photolytic product distribution by varying the parameters of the system. The effects of co-adsorbed spectator molecules with different polarities, namely water, pyridine, and benzene, on the photolysis of o-methyldibenzyl ketone and dibenzyl ketone sorbed on MFI zeolites is examined. This study provides insights into a displacement mechanism caused by spectator molecules and further demonstrates how the product distribution of photolysis of sorbed ketones can be controlled. The kinetics of persistent radicals formed by photolysis of ketones sorbed on zeolites is directly monitored over time by EPR, providing a measure of the lifetime of these reactive organic intermediates. Finally, measurement of Langmuir isotherms was employed to provide classical evidence for the model.  相似文献   

4.
Abstract— Polymeric particles of about 1 u.m in diameter and containing around 40% magnetite have a dramatic influence on the dynamics of triplet radical pair reactions occurring in micelles in their vicinity. The effect has been monitored with laser flash photolysis techniques and results in a decrease of the number of radicals that separate from their geminate partner and an acceleration of radical pair geminate reactions. The effect involves remote interactions because the solution contains ca 1011micelles for each polymeric particle. Magnetite also perturbs the way in which the radicals interact with an external magnetic field.  相似文献   

5.
The effect of temperature on the photolysis of dibenzyl ketone and 4-methyldibenzyl ketone in sodium dodecyl sulfate micelles was studied by laser flash photolysis and product distributions derived from steady-state photolysis. At high temperatures, the product distribution and radical decay kinetics are primarily due to random encounters of radicals, and the "cage effect" cannot be rationalized by geminate recombination reactions that occur before the radicals escape from the micelles. A mechanism is proposed in which the enhancement of the crosstermination product derived from random encounters is due to the different partitioning of each radical species between the micelles and the aqueous phase, thereby leading to different rates for the self-termination reactions.  相似文献   

6.
Femtosecond to nanosecond transient absorption spectroscopy is used to investigate the photolysis of 5'-deoxyadenosylcobalamin (coenzyme B12, AdoCbl) bound to glutamate mutase. The photochemistry of AdoCbl is found to be inherently dependent upon the environment of the cofactor. Excitation of AdoCbl bound to glutamate mutase results in formation of a metal-to-ligand charge transfer intermediate state which decays to form cob(II)alamin with a time constant of 105 ps. This observation is in contrast to earlier measurements in water where the photohomolysis proceeds through an intermediate state in which the axial dimethylbenzimidazole ligand appears to have dissociated, and measurements in ethylene glycol where prompt bond homolysis is observed (Yoder, L. M.; Cole, A. G.; Walker, L. A., II; Sension, R. J. J. Phys. Chem. B 2001, 105, 12180-12188). The quantum yield for formation of stable radical pairs in the enzyme is found to be phi = 0.05 +/- 0.03, and the resulting intrinsic rate constants for geminate recombination and "cage escape" are 1.0 +/- 0.1 and 0.05 +/- 0.03 ns(-1), respectively. The rate constant for geminate recombination is 30% less than that observed for AdoCbl in water or ethylene glycol. This reduction is insufficient to account for the 10(12)-fold increase in the homolysis rate observed when substrate is bound to the protein. Finally, the protein provides a cage to prevent diffusive loss of the adenosyl radical; however, the ultimate yield for long-lived radicals is determined by the evolution from a singlet to a triplet radical pair as proposed for AdoCbl in ethylene glycol.  相似文献   

7.
Photolysis of ketones (1, 1-oMe, 2, 2-oMe, 3, and 4) adsorbed on ZSM-5 zeolites produces persistent carbon-centered radicals that can be readily observed by conventional steady-state EPR spectroscopy. The radicals are persistent for time periods of seconds to many hours depending on the supramolecular structure of the initial radical@zeolite complex and the diffusion and reaction dynamics of radicals produced by photolysis. The structures of the persistent radicals responsible for the observed EPR spectra are determined by a combination of alternate methods of generation of the same radical, by deuterium substitution, and by spectral simulation. A clear requirement for persistence is that the radicals produced by photolysis must either separate and diffuse from the external to the internal surface or be generated within the internal surface and separate and diffuse apart. The persistence of radicals located on the internal surface is the result of inhibition of radical-radical reactions. Radicals that are produced on the external surface and whose molecular structure prevents diffusion into the internal surface are transient because radical-radical reactions occur rapidly on the external surface. The reactions of the persistent radicals with oxygen and nitric oxide were directly studied in situ by EPR analysis. In the case of reaction with oxygen, persistent peroxy radicals are formed in high yield. The addition of nitric oxide scavenges persistent radicals and leads initially to a diamagnetic nitroso compound, which is transformed into a persistent nitroxide radical by further photolysis. The influence of variation of radical structure on transience/persistence is discussed and correlated with supramolecular structure and reactivity of the radicals and their parent ketones.  相似文献   

8.
We have examined the behavior of radical pairs derived by hydrogen abstraction of triplet benzophenone and some of its derivatives from bovine serum albumin, human serum albumin and calf thymus DNA. They have been investigated by means of nanosecond laser flash photolysis techniques. The dynamics of radical pair behavior are shown to be sensitive to external magnetic fields; these effects are interpreted using the established model for the influence of magnetic fields on radical pairs in micellar aggregates, in which intersystem crossing of the radical pair is slowed by the external magnetic field. Our results indicate that proteins and DNA can confine the radicals for a sufficiently long period of time for spin evolution to be affected by external fields. In proteins the radical pair retains its geminate character ( i.e . remains confined) for about 0.5–1 μs. Interestingly, the magnetic field effects observed in proteins and in DNA seem to occur in distinct timescales; for example, for 2,3,4,5,6-pentafluorobenzophenone bound to DNA, the magnetic field alters the radical reactivity only over times ≤50 ns, suggesting poor confinement. The timescale for these effects can be increased by promoting Coulombic attraction between DNA and the radical precursor. Electron transfer interactions play a role in the case of DNA.  相似文献   

9.
The conversion of benzhydryl acetate geminate radical pairs to contact ion pairs following photoinduced homolysis in solution is studied using picosecond pump-probe spectroscopy. The dynamics for the decay of the geminate radical pairs into contact ion pairs is modeled within a Marcus-like theory for nonadiabatic electron transfer. A second decay channel for the geminate radical pairs is diffusional separation to free radicals. The kinetics of this latter process reveals an energy of interaction between the two radicals in the geminate pair.  相似文献   

10.
A rapidly switched (<10 ns) magnetic field was employed to directly observe magnetic fields from f-pair reactions of radical pairs in homogeneous solution. Geminate radical pairs from the photoabstraction reaction of benzophenone from cyclohexanol were observed directly using a pump-probe pulsed magnetic field method to determine their existence time. No magnetic field effects from geminate pairs were observed at times greater than 100 ns after initial photoexcitation. By measuring magnetic field effects for fields applied continuously only after this initial geminate period, f-pair effects could be directly observed. Measurement of the time-dependence of the field effect for the photolysis of 2-hydroxy-4-(2-hydroxyethoxy)-2-methylpropiophenone in cyclohexanol using time-resolved infrared spectroscopy revealed not only the presence of f-pair magnetic field effects but also the ability of the time dependence of the MARY spectra to observe the changing composition of the randomly encountering pairs throughout the second order reaction period.  相似文献   

11.
Magnetic field effect studies of alkylcobalamin photolysis provide evidence for the formation of a reactive radical pair that is born in the singlet spin state. The radical pair recombination process that is responsible for the magnetic field dependence of the continuous-wave (CW) quantum yield is limited to the diffusive radical pair. Although the geminate radical pair of adenosylcob(III)alamin also undergoes magnetic field dependent recombination (A. M. Chagovetz and C. B. Grissom, J. Am. Chem. Soc. 115, 12152–12157, 1993), this process does not account for the magnetic field dependence of the CW quantum yield that is only observed in viscous solvents. Glycerol and ethylene glycol increase the microviscosity of the solution and thereby increase the lifetime of the spin-correlated diffusive radical pair. This enables magnetic field dependent recombination among spin-correlated diffusive radical pairs in the solvent cage. Magnetic field dependent recombination is not observed in the presence of nonviscosigenic alcohols such as isopropanol, thereby indicating the importance of the increased microviscosity of the medium. Paramagnetic radical scavengers that trap alkyl radicals that escape the solvent cage do not diminish the magnetic field effect on the CW quantum yield, thereby ruling out radical pair recombination among randomly diffusing radical pairs, as well as excluding the involvement of solvent-derived radicals. Magnetic field dependent recombination among alkylcobalamin radical pairs has been simulated by a semiclassical model of radical pair dynamics and recombination. These calculations support the existence of a singlet radical pair precursor.  相似文献   

12.
Dynamic covalent chemistry relates to chemical reactions carried out reversibly under conditions of equilibrium control. The reversible nature of the reactions introduces the prospects of "error checking" and "proof-reading" into synthetic processes where dynamic covalent chemistry operates. Since the formation of products occurs under thermodynamic control, product distributions depend only on the relative stabilities of the final products. In kinetically controlled reactions, however, it is the free energy differences between the transition states leading to the products that determines their relative proportions. Supramolecular chemistry has had a huge impact on synthesis at two levels: one is noncovalent synthesis, or strict self-assembly, and the other is supramolecular assistance to molecular synthesis, also referred to as self-assembly followed by covalent modification. Noncovalent synthesis has given us access to finite supermolecules and infinite supramolecular arrays. Supramolecular assistance to covalent synthesis has been exploited in the construction of more-complex systems, such as interlocked molecular compounds (for example, catenanes and rotaxanes) as well as container molecules (molecular capsules). The appealing prospect of also synthesizing these types of compounds with complex molecular architectures using reversible covalent bond forming chemistry has led to the development of dynamic covalent chemistry. Historically, dynamic covalent chemistry has played a central role in the development of conformational analysis by opening up the possibility to be able to equilibrate configurational isomers, sometimes with base (for example, esters) and sometimes with acid (for example, acetals). These stereochemical "balancing acts" revealed another major advantage that dynamic covalent chemistry offers the chemist, which is not so easily accessible in the kinetically controlled regime: the ability to re-adjust the product distribution of a reaction, even once the initial products have been formed, by changing the reaction's environment (for example, concentration, temperature, presence or absence of a template). This highly transparent, yet tremendously subtle, characteristic of dynamic covalent chemistry has led to key discoveries in polymer chemistry. In this review, some recent examples where dynamic covalent chemistry has been demonstrated are shown to emphasise the basic concepts of this area of science.  相似文献   

13.
A combination of product studies and laser flash photolysis (LFP) was used to study the recombination of radical pairs derived from dibenzyl ketone (DBK) and its methyl derivative. Two sizes of vesicles consisting of dioctade-cyldimethylammonium chloride (DODAC) were generated. In the product studies, irradiation of the ketone led to a substantial overall cage effect both above and below the phase-transition temperature. However, LFP results demonstrate that no geminate reactions, that correspond to the reactions of radicals generated from the same precursor molecule are occurring even at room temperature. The results are discussed in terms of the partition effect where the cage effect is determined by the differences in the solubility of the radical inside the vesicle bilayer and in the aqueous phase. In small (30 nm diameter) vesicles, most of the random recombination occurs after re-entry of the radicals into the bilayer, whereas in large (?150 nm) liposomes, a significant proportion of the recombination reactions takes place in the bulk water. This work demonstrates that magnetic fields can efficiently alter the reactivity of radicals involved in nongeminate pathways and further supports the use of the radical pair mechanism to explain possible effects of magnetic fields in biological systems.  相似文献   

14.
Abstract

This review examines the mechanistic origins of the effects of stress on the photochemical degradation rates of polymers. Recent studies have shown that tensile and shear stresses accelerate the rate of the photochemical degradation of polymers. Conversely, compressive stress generally retards the rate of photochemical degradation. After an initial discussion of the photochemical auto‐oxidation mechanism, the three primary hypotheses that purport to explain how stress affects photochemical degradation are examined. The first hypothesis is attributed to Plotnikov, who proposed that stress changes the quantum yields of the reactions that lead to bond photolysis. The second hypothesis, attributed to a number of researchers, says that stress affects the ability of the geminate radical pairs, formed in the photochemical bond cleavage reactions, to recombine. The third hypothesis proposes that stress changes the rates of radical reactions subsequent to radical formation. A further attempt to account for the effects of stress on degradation rates is a modification of the so‐called Zhurkov equation that has been used rather successfully to predict the effects of stress on degradation rates in thermal reactions. This empirical equation relates the quantum yield of degradation to a composite activation barrier for the overall photochemical reaction. Following the discussion of these hypotheses, experimental mechanistic studies of stress effects are summarized, and what little data there is is shown to be consistent with the hypothesis that proposes that stress primarily affects the ability of photochemically generated radical pairs to recombine. By decreasing the efficiency of radical–radical recombination, the effect is to increase the relative efficiencies of the radicals' other reactions and hence the rate of degradation. In addition to stress, other factors can affect the rates of polymer photodegradation. These factors include the absorbed light intensity, the polymer morphology, the rate of oxygen diffusion in the polymer, and the chromophore concentration. Each of these parameters must be carefully controlled in mechanistic studies that probe the effects of stress on degradation rates.  相似文献   

15.
The overall efficiencies of photoinduced electron transfer reactions in polar solvents are usually determined by the efficiency with which separated radical ions are formed from the initially formed geminate radical-ion pairs. These separation efficiencies are determined by the competition between retum electron transfer and separation within the geminate pairs. A method is described for determining whether variations in the quantum yields for formation of separated radical ions are due to changes in the reorganization parameters for the return electron transfer reactions, or to other factors. The use of the method is illustrated in studies of the effects of varying steric bulk and molecular size of the donors, and also in studies of the effect of using a charged sensitizer.  相似文献   

16.
The photochemistry of 3- and 4-benzoylpyridine-cyclodextrin inclusion complexes (BPyCDx) was examined by nanosecond laser flash-photolysis and stationary techniques. The lifetimes of the triplet complex and of the triplet radical pair, formed by H-abstraction from a glucose unit of the CDx, have been measured in β-CDx complexes. The reactivity of the heterocyclic ketones with CDx is higher than that of benzophenone, but the lower binding ability of the macrocycle toward these more hydrophylic molecules induces faster separation of the geminate radicals. The quantum yields of the escaped radicals and their decay kinetics have been determined. The β-CDx cage favours geminate recombination reactions, while α- and -γ-CDx tend to release the guest molecule. Cage products have been spectroscopically characterized in the case of the 3-BPy-β-CDx system.  相似文献   

17.
The existence of radical pairs during the photolysis and the thermolysis of substituted benzenediazonium tetrafluoroborates and hydroquinone in acetonitrile is shown by means of CIDNP. The reaction is assumed to occur via a one-electron-step to form first a radical pair consisting of phenyldiazene and p-benzosemiquinone. This radical pair is able to lose nitrogen either by photolysis or thermolysis and can lead either to a disproportionation or to various recombinations.  相似文献   

18.
The photolysis of (R)-(+)-phenyl and (R)-(+)-p-anisyl 1, 2, 3-trimethylcyclopent-2-enyl ketone ( 1 , 2 ) and the corresponding rac-1- and 3-desmethyl analogs ( 3 , 4 ) led to isomerization due to formal 1, 3 aroyl migration and to formation of aryl aldehydes ( 7 , 8 ), dienes ( 9 , 10 ) and dimers ( 5 , 6 ) of the cyclopentenyl radical. Evidence obtained from a chiroptical and mass spectrometric analysis of a crossing experiment and from photolytic CIDNP measurements including the use of CCl4 as a free radical scavenger, supports the conclusion (1): that the ketones undergo photochemical α-cleavage predominantly in the triplet state; (2): that recombination and disproportionation reactions within the geminate singlet and triplet aroyl/allyl radical pairs ( 11 ) compete with the dissociation into free radicals ( 12 ): (3): that ketone isomerization by paths not involving polarizable radical intermediates is unimportant; (4): that no triplet oxa-di-π-methane type rearrangement products are formed.  相似文献   

19.
The electron spin resonance (ESR) spectra of the transient radical pairs in the photoreduction of 1,5-diphenyl-1,4-pentadiyn-3-one ( I ) and 1,3-diphenyl-2-propyn-1-one ( II ) in sodium dodecyl sulfate (SDS) micellar solutions have been obtained by using the product-yield-detected ESR (PYESR) technique. The PYESR spectra, detected by tracing the microwave effect on the spin-adduct yield as functions of the magnetic field, show the ESR spectra of the ketyl radical of the ketone and SDS radical as the components of the radical pairs. In addition, the growth and the decay processes of the radical pair were observed through detecting the effect of microwave pulse as functions of the delay period between a laser pulse and the off and on time, respectively, of a microwave pulse. The absorption spectra of transient species have also been obtained by using the laser flash photolysis technique. Through the analysis of these data and molecular orbital calculations, the role of acetylenic groups in the photoreactivity of acetylenic ketones is discussed.  相似文献   

20.
The article discusses molecular recognition and overviews the key concepts -storage and retrieval of chemical information by molecular structures, supramolecular reagents and catalysts, molecular transport, semiochemistry and self assembly. The prospects of controlling supramolecular architecture through engineered molecular recognition and design of ‘programmed systems’ controlled by molecular information are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号