首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exposure of the solid zwitterion [CoIII(eta 5-C5H4COOH)(eta 5-C5H4COO)] to vapours of formic acid quantitatively produces the co-crystal [CoIII(eta 5-C5H4COOH)(eta 5-C5H4COO)] [HCOOH] without proton transfer from formic acid to the deprotonated -COO- group on the zwitterion; formic acid can be quantitatively removed by mild thermal treatment, regenerating the starting material.  相似文献   

2.
It is shown that the water-soluble dicarboxylic cationic acid [(eta5-C5H4COOH)2Co(III)]+ (1) is an extremely versatile building block for the construction of organometallic crystalline edifices. Removal of one proton from 1 leads to formation of the neutral zwitterion [(eta5-C5H4COOH)(eta5-C5H4COO)Co(III)] (2), while further deprotonation leads to formation of the dicarboxylate monoanion [(eta5-C5H4COO)2Co(III)]- (3). Compounds 1. 2 and 3 possess different hydrogen-bonding capacity and participate in a variety of hydrogen-bonding networks. The cationic form 1 has been characterised as its [PF6]- and Cl- salts 1-[PF6] and 1-Cl.H2O, as well as in its co-crystal with urea, 1-Cl.3(NH2)2CO, and with the zwitterionic form 2, [(eta5-CH4COOH)(eta5-C5H4COO)Co(III)][(eta5-C5H4COOH)2Co(III)]+[PF6]-, 2.1-[PF6]. The neutral zwitterion 2 behaves as a supramolecular crown ether: it encapsulates the alkali cations K+, Rb+ and Cs+ as well as the ammonium cation NH4+ in cages sustained by O-H...O and C-H...O hydrogen bonds to form co-crystalline salts of the type 2(2)-M[PF6] (M = K, Rb, Cs) and 2(2)-[NH4][PF6]. The deprotonated acid 3 has been characterised as its Cs+ salt, Cs+-3.3H2O.  相似文献   

3.
The organometallic zwitterion [Co(III)(eta(5)-C(5)H(4)COOH)(eta(5)-C(5)H(4)COO)] reacts quantitatively as a solid polycrystalline phase with a number of crystalline alkali salts MX (M = K(+), Rb(+), Cs(+), NH(4) (+); X = Cl(-), Br(-), I(-), PF(6)(-), although not in all cation/anion permutations) to afford supramolecular complexes of the formula [Co(III)(eta(5)-C(5)H(4)COOH)(eta(5)-C(5)H(4)COO)](2).M(+)X(-). In some cases, the mechanochemical complexation requires kneading of the two solids with a catalytic amount of water. The characterization of the solid-state products has been achieved by a combination of X-ray single-crystal and powder-diffraction experiments. The hydrogen-bonding interactions have been investigated by solid-state NMR spectroscopy. The mechanochemical reactions imply a profound solid-state rearrangement accompanied by breaking and forming of O-H...O hydrogen-bonding interactions between the organometallic molecules. All compounds could also be obtained by solution crystallization of the inorganic salts in the presence of the organometallic unit. The solid-state complexation of alkali cations by the organometallic zwitterion has been described as a special kind of solvation process taking place in the solid state.  相似文献   

4.
Manual grinding of the organometallic complex [Fe(eta(5)-C(5)H(4)COOH)(2)] with a number of solid bases, namely 1,4-diazabicyclo[2.2.2]octane, C(6)H(12)N(2), 1,4-phenylenediamine, p-(NH(2))(2)C(6)H(4), piperazine, HN(C(2)H(4))(2)NH, trans-1,4-cyclohexanediamine, p-(NH(2))(2)C(6)H(10), and guanidinium carbonate [(NH(2))(3)C](2)[CO(3)], generates quantitatively the corresponding adducts, [HC(6)H(12)N(2)][Fe(eta(5)-C(5)H(4)COOH)(eta(5)-C(5)H(4)COO)] (1), [HC(6)H(8)N(2)][Fe(eta(5)-C(5)H(4)COOH)(eta(5)-C(5)H(4)COO)] (2), [H(2)C(4)H(10)N(2)][Fe(eta(5)-C(5)H(4)COO)(2)] (3), [H(2)C(6)H(14)N(2)][Fe(eta(5)-C(5)H(4)COO)(2)].2 H(2)O, (4.2 H(2)O), and [C(NH(2))(3)](2)[Fe(eta(5)-C(5)H(4)COO)(2)].2 H(2)O, (5.2 H(2)O), respectively. Crystallization from methanol in the presence of seeds of the ground sample allows the growth of single crystals of these adducts; therefore we were able to determine the structures of the adducts by single-crystal X-ray diffraction. This information was used in turn to identify and characterize the polycrystalline materials obtained by the grinding process. In the case of [HC(6)N(2)H(12)][Fe(eta(5)-C(5)H(4)COOH)(eta(5)-C(5)H(4)COO)] (1), the base can be removed by mild treatment regenerating the starting dicarboxylic acid, while in all other cases decomposition is observed. The solid-solid processes described herein imply molecular diffusion through the lattice, breaking and reassembling of hydrogen-bonded networks, and proton transfer from acid to base.  相似文献   

5.
Solvent-free reactions with molecular systems have been exploited to prepare hybrid organic-organometallic solids: grinding of the complex [Fe(eta 5-C5H4COOH)2] with solid bases B generates quantitatively the corresponding hydrogen bonded salts [Fe(eta 5-C5H4COOH)(eta 5-C5H4COO)][HB] (B = 1,4-diazabicyclo[2.2.2]octane, 1,4-phenylenediamine); gas-solid reactions are also possible with volatile bases.  相似文献   

6.
The complexes [(eta5-RC5H4)Ru(CH3CN)3]PF6(R = H, CH3) react with DCVP (DCVP = Cy2PCH=CH2) at room temperature to produce the phosphaallyl complexes [(eta5-C5H5)Ru(eta1-DCVP)(eta3-DCVP)]PF6 and [(eta5-MeC5H4)Ru(eta1-DCVP)(eta3-DCVP)]PF6. Both compounds react with a variety of two-electron donor ligands displacing the coordinated vinyl moiety. In contrast, we failed to prepare the phosphaallyl complexes [(eta5-C5Me5)Ru(eta1-DCVP)(eta3-DCVP)]PF6, [(eta5-MeC5H4)Ru(CO)(eta3-DCVP)]PF6 and [(eta5-C5Me5)Ru(CO)(eta3-DPVP)]PF6(DPVP = Ph2PCH=CH2).The compounds [(eta5-MeC5H4)Ru(CO)(CH3CN)(DPVP)]PF6 and [(eta5-C5Me5)Ru(CO)(CH3CN)(DPVP)]PF6 react with DMPP (3,4-dimethyl-1-phenylphosphole) to undergo [4 + 2] Diels-Alder cycloaddition reactions at elevated temperature. Attempts at ruthenium catalyzed hydration of phenylacetylene produced neither acetophenone nor phenylacetaldehyde but rather dimers and trimers of phenylacetylene. The structures of the complexes described herein have been deduced from elemental analyses, infrared spectroscopy, 1H, 13C{1H}, 31P{1H} NMR spectroscopy and in several cases by X-ray crystallography.  相似文献   

7.
Cationic nitrile complexes and neutral halide and cyanide complexes, with the general formula [MnL1L2(NO)(eta-C5H4Me)]z, undergo one-electron oxidation at a Pt electrode in CH2Cl2. Linear plots of oxidation potential, Eo', vs. nu(NO) or the Lever parameters, EL, for L1 and L2, allow Eo' to be estimated for unknown analogues. In the presence of TlPF6, [MnIL'(NO)(eta-C5H4Me)] reacts with [Mn(CN)L(NO)(eta-C5H4Me)] to give [(eta5-C5H4Me)(ON)LMn(mu-CN)MnL'(NO)(eta5-C5H4Me)][PF6] which undergoes two reversible one-electron oxidations; DeltaE, the difference between the potentials for the two processes, differs significantly for stable cyanide-bridged linkage isomers. Novel pentametallic complexes such as [Mn[(mu-NC)Mn(CNBut)(NO)(eta5-C5H4Me)]4(OEt2)][PF6]2 and [Mn[(mu-NC)Mn(CNXyl)(NO)(eta5-C5H4Me)]4(NO3-O,O')][PF6], containing a trigonal bipyramidal and a distorted octahedral Mn(II) centre, respectively, result either from slow decomposition of the binuclear cyanide-bridged species or from the reaction of anhydrous MnI2 with four equivalents of [Mn(CN)L(NO)(eta5-C5H4Me)] in the presence of TlPF6.  相似文献   

8.
Exposure of the solid zwitterion [CoIII(eta 5-C5H4CO2H)(eta 5-C5H4CO2)] to hydrated vapours of volatile acids (HCl, CF3CO2H, HBF4) or bases (NH3, NMe3, NH2Me) quantitatively produces the corresponding salts; the heterogeneous reactions are fully reversible, as the acid or base molecules can be removed by thermal treatment, regenerating the starting material.  相似文献   

9.
The synthesis and structural characterization of the hexafluorophosphate salts of the substituted bis-amido molecular complexes [Co(III)(eta5-C5H4CONHC4H3N2)2]+ (1), [Co(III)(eta5-C5H4CONHCH2C5H4N)2]+ (2), [Co(III)(eta5-C5H4CON(C5H4N)2)2]+ (3), and of the amido-carboxyl complexes [Co(III)(eta5-C5H4CON(C5H4N)2)(eta5-C5H4COOH)]+ (4), and [Co(III)(eta5-C5H4CONHC2N3(C5H4N)2)(eta5-C5H4COOH)]+ (5) are reported. The pyridyl and pyrazine substituted amido ligands on the sandwich cores have been chosen because they allow both coordination to metal centres and participation in hydrogen bonding. The hydrogen bonding interactions established by the family of complexes in the solid state has been investigated. The utilization of complex 5 for the preparation of the complex of complexes[Cd(NO3)2{Co(III)(eta5-C5H4CONHC2N3(C5H4N)(C5H4NH))(eta5-C5H4COOH)}2]6+ (6) is reported as a first example of the potential of the substituted mono-and bis-amides as ligands. The isolation and structural characterization of the carbonyl chloride cation [Co(III)(eta5-C5H4COCl)2]+ (7) as its tetrachloro cobaltate anion salt is also described.  相似文献   

10.
The bidentate sandwich ligand [Fe(eta 5-C5H(4)-1-C5H4N)2] has been prepared, structurally characterized and employed in the preparation of the novel supramolecular heterobimetallic metalla-macrocycles [Fe(eta 5-C5H(4)-1-C5H4N)2]Ag2(NO3)(2).1.5H2O, [Fe(eta 5-C5H(4)-1-C5H4N)2]Cu2(CH3COO)(4).3H2O and [Fe(eta 5-C5H(4)-1-C5H4N)2]Zn2Cl4.  相似文献   

11.
The reaction of [Mn(CN)L'(NO)(eta(5)-C(5)R(4)Me)] with cis- or trans-[MnBrL(CO)(2)(dppm)], in the presence of Tl[PF(6)], gives homobinuclear cyanomanganese(i) complexes cis- or trans-[(dppm)(CO)(2)LMn(micro-NC)MnL'(NO)(eta(5)-C(5)R(4)Me)](+), linkage isomers of which, cis- or trans-[(dppm)(CO)(2)LMn(micro-CN)MnL'(NO)(eta(5)-C(5)R(4)Me)](+), are synthesised by reacting cis- or trans-[Mn(CN)L(CO)(2)(dppm)] with [MnIL'(NO)(eta(5)-C(5)R(4)Me)] in the presence of Tl[PF(6)]. X-Ray structural studies on the isomers trans-[(dppm)(CO)(2){(EtO)(3)P}Mn(micro-NC)Mn(CNBu(t))(NO)(eta(5)-C(5)H(4)Me)](+) and trans-[(dppm)(CO)(2){(EtO)(3)P}Mn(micro-CN)Mn(CNBu(t))(NO)(eta(5)-C(5)H(4)Me)](+) show nearly identical molecular structures whereas cis-[(dppm)(CO)(2){(PhO)(3)P}Mn(micro-NC)Mn{P(OPh)(3)}(NO)(eta(5)-C(5)H(4)Me)](+) and cis-[(dppm)(CO)(2){(PhO)(3)P}Mn(micro-CN)Mn{P(OPh)(3)}(NO)(eta(5)-C(5)H(4)Me)](+) differ, effectively in the N- and C-coordination respectively of two different optical isomers of the pseudo-tetrahedral units (NC)Mn{P(OPh)(3)}(NO)(eta(5)-C(5)H(4)Me) and (CN)Mn{P(OPh)(3)}(NO)(eta(5)-C(5)H(4)Me) to the octahedral manganese centre. Electrochemical and spectroscopic studies on [(dppm)(CO)(2)LMn(micro-XY)MnL'(NO)(eta(5)-C(5)R(4)Me)](+) show that systematic variation of the ligands L and L', of the cyclopentadienyl ring substituents R, and of the micro-CN orientation (XY = CN or NC) allows control of the order of oxidation of the two metal centres and hence the direction and energy of metal-metal charge-transfer (MMCT) through the cyanide bridge in the mixed-valence dications. Chemical one-electron oxidation of cis- or trans-[(dppm)(CO)(2)LMn(micro-NC)MnL'(NO)(eta(5)-C(5)R(4)Me)](+) with [NO][PF(6)] gives the mixed-valence dications trans-[(dppm)(CO)(2)LMn(II)(micro-NC)Mn(I)L'(NO)(eta(5)-C(5)R(4)Me)](2+) which show solvatochromic absorptions in the electronic spectrum, assigned to optically induced Mn(I)-to-Mn(II) electron transfer via the cyanide bridge.  相似文献   

12.
Chromium and ruthenium complexes of the chelating phosphine borane H(3)B.dppm are reported. Addition of H(3)B.dppm to [Cr(CO)(4)(nbd)](nbd = norbornadiene) affords [Cr(CO)(4)(eta1-H(3)B.dppm)] in which the borane is linked to the metal through a single B-H-Cr interaction. Addition of H(3)B.dppm to [CpRu(PR(3))(NCMe)(2)](+)(Cp =eta5)-C(5)H(5)) results in [CpRu(PR(3))(eta1-H(3)B.dppm)][PF(6)](R = Me, OMe) which also show a single B-H-Ru interaction. Reaction with [CpRu(NCMe)(3)](+) only resulted in a mixture of products. In contrast, with [Cp*Ru(NCMe)(3)](+)(Cp*=eta5)-C(5)Me(5)) a single product is isolated in high yield: [Cp*Ru(eta2-H(3)B.dppm)][PF(6)]. This complex shows two B-H-Ru interactions. Reaction with L = PMe(3) or CO breaks one of these and the complexes [Cp*Ru(L)(eta1-H(3)B.dppm)][PF(6)] are formed in good yield. With L = MeCN an equilibrium is established between [Cp*Ru(eta2-H(3)B.dppm)][PF(6)] and the acetonitrile adduct. [Cp*Ru (eta2-H(3)B.dppm)][PF(6)] can be considered as being "operationally unsaturated", effectively acting as a source of 16-electron [Cp*Ru (eta1-H(3)B.dppm)][PF(6)]. All the new compounds (apart from the CO and MeCN adducts) have been characterised by X-ray crystallography. The solid-state structure of H(3)B.dppm is also reported.  相似文献   

13.
Novel electroactive multimetallic compounds based on the [Pt(2)(mu(2)-S)(2)M] core, viz. [Pt(2)(PPh(3))(4)(mu(3)-S)(2)HgFc]PF(6) (1) [Fc = (eta(5)-C(5)H(4))Fe(eta(5)-C(5)H(5))] and [Pt(2)(PPh(3))(4)(mu(3)-S)(2)Hg(2)Fc'](PF(6))(2) (2) [Fc' = Fe(eta(5)-C(5)H(4))(2)], have been synthesized under the guide of electrospray mass spectrometry. The electrochemistry of these ferrocene funtionalized compounds together with the reported [Pt(2)(PPh(3))(4)(mu(3)-S)(2)HgPPh(3)](PF(6))(2) (3), [Pt(2)(PPh(3))(4)(mu(2)-S)(mu(3)-S)HgPh]PF(6) (4), and [Pt(2)(PPh(3))(4)(mu(2)-S)(mu(3)-S)AuPPh(3)]PF(6) (5) have been investigated using cyclic voltammetry and DFT calculations. These results point to a prominent ligand-based oxidation.  相似文献   

14.
The title compounds are accessed by sequences starting with racemic and enantiomerically pure [(eta5-C5H5)Re(NO)(PPh3)(CH3)]. Reactions with chlorobenzene/HBF4, PPh2H, and tBuOK give the phosphido complex [(eta5-C5H5)Re(NO)(PPh3)(PPh2)] (3). Reactions with Ph3C+ BF4-, PPh2H, and tBuOK give the methylene homologue [(eta5-C5H5)Re(NO)(PPh3)(CH2PPh2)] (9). Treatment of 3 or 9 with nBuLi or tBuLi and then PPh3Cl gives the diphosphido systems [(eta5-C5H4PPh2)Re(NO)(PPh3)((CH2)nPPh2)] (n = 0/1, 5/11). Reactions of 5 and 11 with [Rh(NBD)Cl]2/AgPF6 (NBD = norbornadiene) give the rhenium/rhodium chelate complexes [(eta5-C5H4PPh2)Re(NO)(PPh3)((mu-CH2)nPPh2)Rh(NBD)]+ PF6- (n = 0/1, 6+/12+ PF6-; 30-32% overall from commercial Re2(CO)10). The crystal structures of 6+ PF6- and 12+ PF6- are compared to those of 3 and 9, and other rhodium complexes of chelating bis(diphenylphosphines). The chiral pockets defined by the PPh2 groups show unusual features. Four alkenes of the type (Z)-RCH=C(NHCOCH3)CO2R' are treated with H2 (1 atm) and (R)-6+ PF6- or (S)-12+ PF6- (0.5 mol%) in THF at room temperature. Protected amino acids are obtained in 70-98% yields and 93-82% ee [(R)-6- PF6-] or 72-60% ee [(S)-12+ PF6-]. Pressure and temperature effects are defined, and turnover numbers of > 1600 are realized.  相似文献   

15.
The reactivity of (eta(3)-allyl)palladium chloro dimers [(1-R-eta(3)-C(3)H(4))PdCl](2) (R = H or Me) towards a sterically hindered diphosphazane ligand [EtN{P(OR)(2)}(2)] (R = C(6)H(3)(Pr(i))(2)-2,6), has been investigated under different reaction conditions. When the reaction is carried out using NH(4)PF(6) as the halide scavenger, the cationic complex [(1-R-eta(3)-C(3)H(4))Pd{EtN(P(OR)(2))(2)}]PF(6) (R = H or Me) is formed as the sole product. In the absence of NH(4)PF(6), the initially formed cationic complex, [(eta(3)-C(3)H(5))Pd{EtN(P(OR)(2))(2)}]Cl, is transformed into a mixture of chloro bridged complexes over a period of 4 days. The dinuclear complexes, [(eta(3)-C(3)H(5))Pd(2)(mu-Cl)(2){P(O)(OR)(2)}{P(OR)(2)(NHEt)}] and [Pd(mu-Cl){P(O)(OR)(2)}{P(OR)(2)(NHEt)}](2) are formed by P-N bond hydrolysis, whereas the octa-palladium complex [(eta(3)-C(3)H(5))(2-Cl-eta(3)-C(3)H(4))Pd(4)(mu-Cl)(4)(mu-EtN{P(OR)(2)}(2))](2), is formed as a result of nucleophilic substitution by a chloride ligand at the central carbon of an allyl fragment. The reaction of [EtN{P(OR)(2)}(2)] with [(eta(3)-C(3)H(5))PdCl](2) in the presence of K(2)CO(3) yields a stable dinuclear (eta(3)-allyl)palladium(I) diphosphazane complex, [(eta(3)-C(3)H(5))[mu-EtN{P(OR)(2)}(2)Pd(2)Cl] which contains a coordinatively unsaturated T-shaped palladium center. This complex exhibits high catalytic activity and high TON's in the catalytic hydrophenylation of norbornene.  相似文献   

16.
The U(III) mixed-sandwich compound [U(eta-C5Me4H)(eta-C8H6{SiiPr3-1,4}2)(THF)] 1 may be prepared by sequential reaction of UI3 with K[C5Me4H] in THF followed by K2[C8H6{SiiPr3-1,4}2]. 1 reacts with carbon monoxide at -30 degrees C and 1 bar pressure in toluene solution to afford the crystallographically characterized dimer [(U(eta-C8H6{SiiPr3-1,4}2)(eta-C5Me4H)]2(mu-eta2: eta2-C4O4) 2, which contains a bridging squarate unit derived from reductive cyclotetramerization of CO. DFT computational studies indicate that addition of a 4th molecule of CO to the model deltate complex [U(eta-COT)(eta-Cp)]2(mu-eta1: eta2-C3O3)] to form the squarate complex [U(eta-COT)(eta-Cp)]2(mu-eta2: eta2-C4O4)] is exothermic by 136 kJ mol-1.  相似文献   

17.
Coordination of N,N' bidentate ligands aryl-pyridin-2-ylmethyl-amine ArNH-CH2-2-C5H4N 1 (Ar = 4-CH3-C6H4, 1a; 4-CH3O-C6H4, 1b; 2,6-(CH3)2-C6H3, 1c; 4-CF3-C6H4, 1d) to the moieties [Ru(bipy)2]2+, [Ru(eta5-C5H5)L]+ (L = CH3CN, CO), or [Ru(eta6-arene)Cl]2+ (arene = benzene, p-cymene) occurs under diastereoselective or diastereospecific conditions. Detailed stereochemical analysis of the new complexes is included. The coordination of these secondary amine ligands activates their oxidation to imines by molecular oxygen in a base-catalyzed reaction and hydrogen peroxide was detected as byproduct. The amine-to-imine oxidation was also observed under the experimental conditions of cyclic voltammetry measurements. Deprotonation of the coordinated amine ligands afforded isolatable amido complexes only for the ligand (1-methyl-1-pyridin-2-yl-ethyl)-p-tolyl-amine, 1e, which doesn't contain hydrogen atoms in a beta position relative to the N-H bond. The structures of [Ru(2,2'-bipyridine)2(1b)](PF6)2, 2b; [Ru(2,2'-bipyridine)(2)(1c)](PF6)2, 2c; trans-[RuCl2(COD)(1a)], 3; and [RuCl2(eta6-C6H6)(1a)]PF6, 4a, have been confirmed by X-ray diffraction studies.  相似文献   

18.
The heteroleptic sandwich complex [Cr(eta(5)-C5H5)(eta(7)-C7H7)] (trochrocene) was prepared by subsequent treatment of CrCl3 with NaCp and Mg in the presence of cycloheptatriene in yields of 40%. Selective dimetalation employing tBuLi/tmeda (N, N, N', N'-tetramethylethylenediamine) afforded the highly reactive species [Cr(eta(5)-C5H4Li)(eta(7)-C7H6Li)] x tmeda. An X-ray crystal-structure determination of its thf solvate revealed a symmetrical, dimeric composition in the solid state, that is, a formula of [Cr(eta(5)-C5H4Li)(eta(7)-C7H6Li)]2 x (thf)8, where the C5H4 moieties of both units are connected by two bridging lithium atoms. Addition of different element dihalides to the dilithio precursor facilitated the isolation of ansa complexes with boron and germanium in the bridging position. Structural characterization by X-ray diffraction studies on [Cr(eta(5)-C5H4)-BN(SiMe3)2-(eta(7)-C7H6)] and [Cr(eta(5)-C5H4)-GeMe2-(eta(7)-C7H6)] emphasized the strained character with tilt angles of 23.87(13) degrees and 15.07(17) degrees , respectively. In contrast, the isolation of the appropriate [1]stannatrochrocenophane failed because of the thermal lability of the resulting product. However, the corresponding 1,1'-disubstitued derivatives [Cr(eta(5)-C5H4R)(eta(7)-C7H6R)] (R = B(Cl)NiPr2, SiMe3, GeMe3, SnMe3) were obtained by reverse addition of the dilithio precursor to an excess of the element (di)halide. The unstrained nature was proven by a crystal structure analysis of the 1,1'-diborylated species. The electronic structure of these substituted trochrocene derivatives, as well as of the [2]bora and [n]sila congeners (n = 1, 2), was investigated by means of UV-vis spectroscopy and DFT methods. As a consequence of the strong electronic influence of the B-N pi-system on the LUMOs, the UV-vis studies revealed a complementary correlation of the lowest energy band maxima as a function of molecular distortion for the boron containing species on the one hand, and the boron-free compounds on the other hand. These trends were reproduced fairly well by time dependent DFT calculations.  相似文献   

19.
The complex [Rh(kappa(3)-N,N,N-pybox)(CO)][PF(6)] (1) has been prepared by reaction of the precursor [Rh(mu-Cl)(eta(2)-C(2)H(4))(2)](2), 2,6-bis[4'(S)-isopropyloxazolin-2'-yl]pyridine (pybox), CO, and NaPF(6). Complex 1 reacts with monodentate phosphines to give the complexes [Rh(kappa(1)-N-pybox)(CO)(PR(3))(2)][PF(6)] (R(3) = MePh(2) (2), Me(2)Ph (3), (C(3)H(5))Ph(2) (4)), which show a previously unseen monodentate coordination of pybox. Complex 1 undergoes oxidative addition reactions with iodine and CH(3)I leading to the complexes [RhI(R)(kappa(3)-N,N,N-pybox)(CO)][PF(6)] (R = I (5); R = CH(3) (6)). Furthermore, a new allenyl Rh(III)-pybox complex of formula [Rh(CH=C=CH(2))Cl(2)(kappa(3)-N,N,N-pybox)] (7) has been synthesized by a one-pot reaction from [Rh(mu-Cl)(eta(2)-C(2)H(4))(2)](2), pybox, and an equimolar amount of propargyl chloride.  相似文献   

20.
Treatment of the isomeric 12-vertex nickelacarbaborane salts [NEt(4)][3-(eta3)-C(3)H(5))-closo-3,1,2-NiC(2)B(9)H(11)] and [NEt(4)][2-(eta3)-C(3)H(5))-closo-2,1,7-NiC(2)B(9)H(11)] with [CuCl(PPh(3))](4) and Tl[PF(6)] affords the zwitterionic bimetallic species [3-(eta3)-C(3)H(5))-3,4,8-[Cu(PPh(3))]-4,8-(mu-H)(2)-closo-3,1,2-NiC(2)B(9)H(9)] and [2-(eta3)-C(3)H(5))-2,6,11-(Cu(PPh(3)))-6,11-(mu-H)(2)-closo-2,1,7-NiC(2)B(9)H(9)], respectively. Similarly, the 13-vertex nickelacarbaborane [NEt(4)][4-(eta3)-C(3)H(5))-closo-4,1,6-NiC(2)B(10)H(12)] reacts with sources of mono-cationic metal fragments to form [4-(eta3)-C(3)H(5))-7,8,13-(Cu(PPh(3)))-7,8,13-(mu-H)(3)-4,1,6-closo-NiC(2)B(10)H(9)], [4-(eta3)-C(3)H(5))-3,8-(Rh(PPh(3))(2))-3,8-(mu-H)(2)-4,1,6-closo-NiC(2)B(10)H(10)] and [4-(eta3)-C(3)H(5))-3,7,8-(RuCl(PPh(3))(2))-3,7,8-(mu-H)(3)-4,1,6-closo-NiC(2)B(10)H(9)]. The molecular structures of these five new bimetallic compounds were determined by X-ray diffraction studies, confirming that exopolyhedral Cu, Rh and Ru fragments are attached to the cluster via B-H[right harpoon up]M agostic-type interactions and, in the case of the (NiC(2)B(9)) species, by a metal-metal bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号