首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two new bidentate ligands (1 and 2) with bicyclic guanidine moieties were synthesized and attached to a Ru(II)(bpy)(2) core (bpy = 2,2'-bipyridine) to afford complexes 3 and 4, which were characterized by spectroscopic and electrochemical methods. Complex 4 was further characterized by X-ray crystallography. In cyclic voltammetric studies, both complexes show a Ru(II/III) couple, which is 500 mV less positive than the Ru(II/III) couple of Ru(bpy)(3)(2+). The (1)MLCT and (3)MLCT states of 3 (560 nm/745 nm) and 4 (550 nm/740 nm) are significantly red-shifted with respect to Ru(bpy)(3)(2+) (440 nm/620 nm). Compounds 3 and 4 exhibit emission from a Ru(II)-to-bpy (3)MLCT state, which is rarely the emitting state at λ > 700 nm in [Ru(bpy)(2)(N-N)](2+) complexes.  相似文献   

2.
The reaction of Ru(trpy)Cl(3) (trpy = 2,2':6',2"-terpyridine) with the pyridine-based imine function N(p)C(5)H(4)-CH=N(i)-NH-C(6)H(5) (L), incorporating an NH spacer between the imine nitrogen (N(i)) and the pendant phenyl ring, in ethanol medium followed by chromatographic work up on a neutral alumina column using CH(3)CN/CH(2)Cl(2) (1:4) as eluent, results in complexes of the types [Ru(trpy)(L')](ClO(4))(2) (1) and [Ru(trpy)(L)Cl]ClO(4) (2). Although the identity of the free ligand (L) has been retained in complex 2, the preformed imine-based potentially bidentate ligand (L) has been selectively transformed into a new class of unusual imine-amidine-based tridentate ligand, N(p)C(5)H(4)-CH=N(i)-N(C(6)H(5))C(CH(3))=N(a)H (L'), in 1. The single-crystal X-ray structures of the free ligand (L) and both complexes 1 and 2 have been determined. In 2, the sixth coordination site, that is, the Cl(-) function, is cis to the pyridine nitrogen (N(p)) of L which in turn places the NH spacer away from the Ru-Cl bond, whereas, in 1, the corresponding sixth position, that is, the Ru-N(a) (amidine) bond, is trans to the pyridine nitrogen (N(p)) of L'. The trans configuration of N(a) with respect to the N(p) of L' in 1 provides the basis for the selective L --> L' transformation in 1. The complexes exhibit strong Ru(II) --> pi* (trpy) MLCT transitions in the visible region and intraligand transitions in the UV region. The lowest energy MLCT band at 510 nm for 2 has been substantially blue-shifted to 478 nm in the case of 1. The reversible Ru(III)-Ru(II) couples for 1 and 2 have been observed at 0.80 and 0.59 V versus SCE, respectively. The complexes are weakly luminescent at 77 K, exhibiting emissions at lambda(max), 598 nm [quantum yield (Phi) = 0.43 x 10(-2)] and 574 nm (Phi = 0.28 x 10(-2)) for 1 and 2, respectively.  相似文献   

3.
Transient spectral hole-burning (THB), a powerful technique for probing the electronic structures of coordination compounds, is applied to the lowest excited 3MLCT states of specifically deuterated [Ru(bpy)3]2+ complexes doped into crystals of racemic [Zn(bpy)3](ClO4)2. Results are consistent with and complementary to conclusions reached from excitation-line-narrowing experiments. Two sets of 3MLCT transitions are observed in conventional spectroscopy of [Ru(bpy-d(n))(3-x)(bpy-d(m))x]2+ (x = 1, 2; n = 0, 2; m = 2, 8; n not = m) complexes doped into [Zn(bpy)3](ClO4)2. The two sets coincide with the 3MLCT transitions observed for the homoleptic [Ru(bpy-d(m))3]2+ and [Ru(bpy-d(n))3]2+ complexes and can thus be assigned to localized 3MLCT transitions to the bpy-d(m) and bpy-d(n) ligands. The THB experiments presented in this paper exclude a two-site hypothesis. When spectral holes are burnt at 1.8 K into 3MLCT transitions associated with the bpy and bpy-d2 ligands in [Ru(bpy)(bpy-d8)2]2+, [Ru(bpy)2(bpy-d8)]2+, and [Ru(bpy-d2)2(bpy-d8)]2+, side holes appear in the 3MLCT transitions associated with the bpy-d8 ligands approximately 40 and approximately 30 cm(-1) higher in energy. Since energy transfer to sites 40 or 30 cm(-1) higher in energy cannot occur at 1.8 K, the experiments unequivocally establish that the two sets of 3MLCT transitions observed for [Ru(bpy-d(n))(3-x)(bpy-d(m))x]2+ (x = 1, 2) complexes in [Zn(bpy)3](ClO4)2 occur on one molecular cation.  相似文献   

4.
We report the synthesis, structure and properties of the cyanide-bridged dinuclear complex ions [Ru(L)(bpy)(μ-NC)M(CN)(5)](2-/-) (L = tpy, 2,2';6',2'-terpyridine, or tpm, tris(1-pyrazolyl)methane, bpy = 2,2'-bipyridine, M = Fe(II), Fe(III), Cr(III)) and the related monomers [Ru(L)(bpy)X](2+) (X = CN(-) and NCS(-)). All the monomeric compounds are weak MLCT emitters (λ = 650-715 nm, ? ≈ 10(-4)). In the Fe(II) and Cr(III) dinuclear systems, the cyanide bridge promotes efficient energy transfer between the Ru-centered MLCT state and a Fe(II)- or Cr(III)-centered d-d state, which results either in a complete quenching of luminescence or in a narrow red emission (λ ≈ 820 nm, ? ≈ 10(-3)) respectively. In the case of Fe(III) dinuclear systems, an electron transfer quenching process is also likely to occur.  相似文献   

5.
The isocyanide ligand forms complexes with ruthenium(II) bis-bipyridine of the type [Ru(bpy)(2)(CNx)Cl](CF(3)SO(3)) (1), [Ru(bpy)(2)(CNx)(py)](PF(6))(2) (2), and [Ru(bpy)(2)(CNx)(2)](PF(6))(2) (3) (bpy = 2,2'-bipyridine, py = pyridine, and CNx = 2,6-dimethylphenylisocyanide). The redox potentials shift positively as the number of CNx ligands increases. The metal-to-ligand charge-transfer (MLCT) bands of the complexes are located at higher energy than 450 nm and blue shift in proportion to the number of CNx ligands. The complexes are not emissive at room temperature but exhibit intense structured emission bands at 77 K with emission lifetimes as high as 25 micros. Geometry optimization of the complexes in the singlet ground and lowest-lying triplet states performed using density functional theory (DFT) provides information about the orbital heritage and correlates with X-ray and electrochemical results. The lowest-lying triplet-state energies correlate well with the 77 K emission energies for the three complexes. Singlet excited states calculated in ethanol using time-dependent density functional theory (TDDFT) and the conductor-like polarizable continuum model (CPCM) provide information that correlates favorably with the experimental absorption spectra in ethanol.  相似文献   

6.
We have synthesized ruthenium(II) polypyridyl complexes (1) Ru(II)(bpy)(2)(L(1)), (2) Ru(II)(bpy)(2)(L(2)) and (3) Ru(II)(bpy)(L(1))(L(2)), where bpy = 2,2'-bipyridyl, L(1) = 4-[2-(4'-methyl-2,2'-bipyridinyl-4-yl)vinyl]benzene-1,2-diol) and L(2) = 4-(N,N-dimethylamino-phenyl)-(2,2'-bipyridine) and investigated the intra-ligand charge transfer (ILCT) and ligand-ligand charge transfer (LLCT) states by optical absorption and emission studies. Our studies show that the presence of electron donating -NMe(2) functionality in L(2) and electron withdrawing catechol fragment in L(1) ligands of complex 3 introduces low energy LLCT excited states to aboriginal MLCT states. The superimposed LLCT and MLCT state produces redshift and broadening in the optical absorption spectra of complex 3 in comparison to complexes 1 and 2. The emission quantum yield of complex 3 is observed to be extremely low in comparison to that of complex 1 and 2 at room temperature. This is attributed to quenching of the (3)MLCT state by the low-emissive (3)LLCT state. The emission due to ligand localized CT state (ILCT and LLCT) of complexes 2 and 3 is revealed at 77 K in the form of a new luminescence band which appeared in the 670-760 nm region. The LLCT excited state of complex 3 is populated either via direct photoexcitation in the LLCT absorption band (350-700 nm) or through internal conversion from the photoexcited (3)MLCT (400-600 nm) states. The internal conversion rate is determined by quenching of the (3)MLCT state in a time resolved emission study. The internal conversion to LLCT and ILCT excited states are observed to be as fast as ~200 ps and ~700 ps for complexes 3 and 2, respectively. The present study illustrates the photophysical property of the ligand localized excited state of newly synthesized heteroleptic ruthenium(II) polypyridyl complexes.  相似文献   

7.
The effects of ligand perdeuteration on the metal-to-ligand charge-transfer (MLCT) excited-state emission properties at 77 K are described for several [Ru(L)(4)bpy](2+) complexes in which the emission process is nominally [uIII,bpy-] --> [RuII,bpy]. The perdeuteration of the 2,2'-bipyridine (bpy) ligand is found to increase the zero-point energy differences between the ground states and MLCT excited states by amounts that vary from 0 +/- 10 to 70 +/- 10 cm(-1) depending on the ligands L. This indicates that there are some vibrational modes with smaller force constants in the excited states than in the ground states for most of these complexes. These blue shifts increase approximately as the energy difference between the excited and ground states decreases, but they are otherwise not strongly correlated with the number of bipyridine ligands in the complex. Careful comparisons of the [Ru(L)(4)(d(8)-bpy)](2+) and [Ru(L)(4)(h(8)-bpy](2+) emission spectra are used to resolve the very weak vibronic contributions of the C-H stretching modes as the composite contributions of the corresponding vibrational reorganizational energies. The largest of these, 25 +/- 10 cm(-1), is found for the complexes with L = py or bpy/2 and smaller when L = NH(3). Perdeuteration of the am(m)ine ligands (NH(3), en, or [14]aneN(4)) has no significant effect on the zero-point energy difference, and the contributions of the NH stretching vibrational modes to the emission band shape are too weak to resolve. Ligand perdeuteration does increase the excited-state lifetimes by a factor that is roughly proportional to the excited-state-ground-state energy difference, even though the CH and NH vibrational reorganizational energies are too small for nuclear tunneling involving these modes to dominate the relaxation process. It is proposed that metal-ligand skeletal vibrational modes and configurational mixing between metal-centered, bpy-ligand-centered, and MLCT excited states are important in determining the zero-point energy differences, while a large number of different combinations of relatively low-frequency vibrational modes must contribute to the nonradiative relaxation of the MLCT excited states.  相似文献   

8.
Two new star-shaped ligands with a 1,3,5-triphenylbenzene core, tmpb (1,3,5-tris[p-2-(2'-pyridyl)benzimidazolylphenyl]benzene), and a 2,4,6-tris(p-biphenyl)-1,3,5-triazine core, tmbt (2,4,6-tris[p-2-(2'-pyridyl)benzimidazolylbiphenyl]-1,3,5-triazine), have been synthesized. Their corresponding trinuclear Ru(II) complexes [Ru3(tmpb)(bpy)6](PF6)6 (3) and [Ru3(tmpt)(bpy)6](PF6)6 (4) have been obtained. Two dinuclear linear Ru(II) complexes with previously reported ligands bmb (1,4-bis[2-(2'-pyridyl)benzimidazolyl]benzene) and bmbp (4,4'-bis[2-(2'-pyridyl)benzimidazolyl]biphenyl) and formulae [Ru2(bmb)(bpy)4](PF6)4 (1) and [Ru2(bmbp)(bpy)4](PF6)4 (2) have also been synthesized. Photophysical and electrochemical properties of the new compounds have been investigated. All four compounds display a characteristic metal-to-ligand-charge transfer (MLCT) absorption band and emit a red light when excited at the maximum of the MLCT band with emission maximum at 624, 629, 623 and 625 nm, respectively in neat films at ambient temperature. The emission quantum efficiency of the four complexes in neat films was determined to be 0.15, 0.17, 0.04 and 0.05, respectively. Light emitting devices based on these four compounds were fabricated by spin-casting the compound as a neat film to an ITO substrate, followed by the deposition of an aluminium metal layer. All devices emit a deep red light and the device behavior resembles that of a light emitting electrochemical cell. The EL maximum of the devices 1, 2, 3, and 4 is at 637, 657, 678, and 655 nm, respectively. All four devices have a fast response time when a sufficiently high voltage is applied. The device based on 2 is the brightest with a maximum luminance of 133 cd m(-2) at 7 V. The performance of devices based on 1, 2, and 4 is in general much more efficient than the device based on [Ru(bpy)3](PF6)2, which was fabricated and evaluated under the same experimental conditions as for the devices based on 1-4.  相似文献   

9.
The absorption, emission, and infrared spectra, metal (Ru) and ligand (PP) half-wave potentials, and ab initio calculations on the ligands (PP) are compared for several [L(n)()Ru(PP)](2+) and [[L(n)Ru]dpp[RuL'(n)]](4+) complexes, where L(n) and L'(n) = (bpy)(2) or (NH(3))(4) and PP = 2,2'-bipyridine (bpy), 2,3-bis(2-pyridyl)pyrazine (dpp), 2,3-bis(2-pyridyl)quinoxaline (dpq), or 2,3-bis(2pyridyl)benzoquinoxaline (dpb). The energy of the metal-to-ligand charge-transfer (MLCT) absorption maximum (hnu(max)) varies in nearly direct proportion to the difference between Ru(III)/Ru(II) and (PP)/(PP)(-) half-wave potentials, DeltaE(1/2), for the monometallic complexes but not for the bimetallic complexes. The MLCT spectra of [(NH(3))(4)Ru(dpp)](2+) exhibit three prominent visible-near-UV absorptions, compared to two for [(NH(3))(4)Ru(bpy)](2+), and are not easily reconciled with the MLCT spectra of [[(NH(3))(4)Ru]dpp[RuL(n)]](4+). The ab initio calculations indicate that the two lowest energy pi orbitals are not much different in energy in the PP ligands (they correlate with the degenerate pi orbitals of benzene) and that both contribute to the observed MLCT transitions. The LUMO energies calculated for the monometallic complexes correlate strongly with the observed hnu(max) (corrected for variations in metal contribution). The LUMO computed for dpp correlates with LUMO + 1 of pyrazine. This inversion of the order of the two lowest energy pi orbitals is unique to dpp in this series of ligands. Configurational mixing of the ground and MLCT excited states is treated as a small perturbation of the overall energies of the metal complexes, resulting in a contribution epsilon(s) to the ground-state energy. The fraction of charge delocalized, alpha(DA)(2), is expected to attenuate the reorganizational energy, chi(reorg), by a factor of approximately (1 - 4alpha(DA)(2) + alpha(DA)(4)), relative to the limit where there is no charge delocalization. This appears to be a substantial effect for these complexes (alpha(DA)(2) congruent with 0.1 for Ru(II)/bpy), and it leads to smaller reorganizational energies for emission than for absorption. Reorganizational energies are inferred from the bandwidths found in Gaussian analyses of the emission and/or absorption spectra. Exchange energies are estimated from the Stokes shifts combined with perturbation--theory-based relationship between the reorganizational energies for absorption and emission values. The results indicate that epsilon(s) is dominated by terms that contribute to electron delocalization between metal and PP ligand. This inference is supported by the large shifts in the N-H stretching frequency of coordinated NH(3) as the number of PP ligands is increased. The measured properties of the bpy and dpp ligands seem to be very similar, but electron delocalization appears to be slightly larger (10-40%) and the exchange energy contributions appear to be comparable (e.g., approximately 1.7 x 10(3) cm(-1) in [Ru(bpy)(2)dpp](2+) compared to approximately 1.3 x 10(3) cm(-1) in the bpy analogue).  相似文献   

10.
Crystallographically characterised 3,6-bis(2'-pyridyl)pyridazine (L) forms complexes with {(acac)2Ru} or {(bpy)2Ru2+}via one pyridyl-N/pyridazyl-N chelate site in mononuclear Ru(II) complexes (acac)2Ru(L), 1, and [(bpy)2Ru(L)](ClO4)2, [3](ClO4)2. Coordination of a second metal complex fragment is accompanied by deprotonation at the pyridazyl-C5 carbon {L --> (L - H+)-} to yield cyclometallated, asymmetrically bridged dinuclear complexes [(acac)2Ru(III)(mu-L - H+)Ru(III)(acac)2](ClO4), [2](ClO4), and [(bpy)2Ru(II)(mu-L - H+)Ru(II)(bpy)2](ClO4)3, [4](ClO4)3. The different electronic characteristics of the co-ligands, sigma donating acac- and pi accepting bpy, cause a wide variation in metal redox potentials which facilitates the isolation of the diruthenium(III) form in [2](ClO4) with antiferromagnetically coupled Ru(III) centres (J = -11.5 cm(-1)) and of a luminescent diruthenium(II) species in [4](ClO4)3. The electrogenerated mixed-valent Ru(II)Ru(III) states 2 and [4]4+ with comproportionation constants Kc > 10(8) are assumed to be localised with the Ru(III) ion bonded via the negatively charged pyridyl-N/pyridazyl-C5 chelate site of the bridging (L - H+)- ligand. In spectroelectrochemical experiments they show similar intervalence charge transfer bands of moderate intensity around 1300 nm and comparable g anisotropies (g1-g3 approximatly 0.5) in the EPR spectra. However, the individual g tensor components are distinctly higher for the pi acceptor ligated system [4]4+, signifying stabilised metal d orbitals.  相似文献   

11.
This paper presents the synthesis, MO calculations, and photochemical and photophysical properties of cis-[Ru(bpy)2(3Amdpy2oxaNBE)](PF6)2 (2), where bpy is 2,2'-bipyridine and 3Amdpy2oxaNBE is the novel 5,6-bis(3-amidopyridine)-7-oxanorbornene chelate-ligand (1). Complex 2 is considered in relation to the cis-[Ru(bpy)2(3Amnpy)2](PF6)2 (3) analogous complex, where 3Amnpy is 3-aminopyridine. Complexes 2 and 3 exhibit absorptions near 350 nm and in the 420-500 nm region attributable to a contribution from MLCT transitions (dpi-->bpy and dpi-->L; L=3Amdpy2oxaNBE or 3Amnpy). Whereas complex 3 is photochemically reactive, complex 2 shows luminescence either at 77 K or at room temperature in fluid solution. The emission of 2 assignable as an MLCT (Ru-->bpy) emission is characterized by a long lifetime at room temperature (650 ns in CH3CN and 509 ns in H2O). It is independent of lambdairr, but it is temperature dependent; i.e., it increases as the temperature is lowered. Considering the chelate ring of 1 contributes to the stability of the complex 2 under continuous light irradiation, the difference in the primary photoprocesses of 3 (loss of 3Amnpy) and 2 (luminescence) may be caused by a lowering of the lowest excited state from 3 to 2. The surface crossing to the lowest MC state value of 987 cm-1 (similar to that of [Ru(bpy)3]2+) will be prevented in the case of complex 2, and as a result, efficient 3Amdpy moiety loss cannot occur. The electronic depopulation of the {Ru(bpy)2} unit and population of a bpy* orbital upon excitation are evident by comparing the photophysical properties with those of a [Ru(bpy)3]2+ related complex. Moreover, a reduction of a bpy ligand in the MLCT excited state is indicated by time-resolved spectra that show features typical of bpy*-. The photocatalytic property of 2 is spectroscopically demonstrated by oxidative quenching using either methylviologen2+ or [RuCl(NH3)5]+2 electron-acceptor ions.  相似文献   

12.
Excitation (410 nm) of the bimetallic [(bpy)(2)Ru(CN)(mu-CN)Rh(NH(3))(4)Br](2+) produces the MLCT state localized on the (bpy)(2)Ru(CN)(2) ligand. Photoinduced cleavage of the bimetallic occurs in the presence of [H(+)], and the dependence yields a K(a) equivalent to that for ground-state cis-(bpy)(2)Ru(CN)(2) implying separation of the bimetallic prior to relaxation. The pH dependence and the emissivity of a bimetallic composed of components that individually quench at a diffusion controlled rate suggest that rupture of the RuCN-Rh bond is due to the reduction in electron density at the cyano ligand that occurs on population of the MLCT state. Unlike known photoinduced metal ligand dissociations, where the excitation energy is consumed in the dissociation, the dissociated "(bpy)(2)Ru(CN)(2) ligand" remains excited.  相似文献   

13.
The synthesis and photophysical and electrochemical properties of tris(homoleptic) complexes [Ru(tpbpy)3](PF6)2 (1) and [Os(tpbpy)3](PF6)2 (2) (tpbpy = 6'-tolyl-2,2':4',2' '-terpyridine) are reported. The ligand tpbpy is formed as the side product during the synthesis of 4'-tolyl-2,2':6',2' '-terpyridine (ttpy) and characterized by single-crystal X-ray diffraction: monoclinic, P21/c. The tridentate tpbpy coordinates as a bidentate ligand. The complexes 1 and 2 exhibit two intense absorption bands in the UV region (200-350 nm) assignable to the ligand-centered (1LC) pi-pi* transitions. The ruthenium(II) complex exhibits a broad absorption band at 470 nm while the osmium(II) complex exhibits an intense absorption band at 485 nm and a weak band at 659 nm assignable to the MLCT (dpi-pi*) transitions. A red shifting of the dpi-pi* MLCT transition is observed on going from the Ru(II) to the Os(II) complex as expected from the high-lying dpi Os orbitals. These complexes exhibit ligand-sensitized emission at 732 and 736 nm, respectively, upon light excitation onto their MLCT band through excitation of higher energy LC bands at room temperature. The MLCT transitions and the emission maxima of 1 and 2 are substantially red-shifted compared to that of [Ru(bpy)3](PF6)2 and [Os(bpy)3](PF6)2. The emission of both the complexes in the presence of acid is completely quenched indicating that the emission is not due to the protonation of the coordinated ligands. Our results indicate the occurrence of intramolecular energy transfer from the ligand to the metal center. Both the complexes undergo quasi-reversible metal-centered oxidation, and the E1/2 values for the M(II)/M(III) redox couples (0.94 and 0.50 V versus Ag/Ag+ for 1 and 2, respectively) are cathodically shifted with respect to that of [Ru(bpy)3](PF6)2 and [Os(bpy)3](PF6)2 (E1/2 = 1.28 and 1.09 V versus Ag/Ag+, respectively). The tris(homoleptic) Ru(II) and Os(II) complexes 1 and 2 could be used to construct polynuclear complexes by using the modular synthetic approach in coordination compounds by exploiting the coordinating ability of the pyridine substituent. Furthermore, these complexes offer the possibility of studying the influence of electron-withdrawing and electron-donating substituents on the photophysical properties of Ru(II) and Os(II) polypyridine complexes.  相似文献   

14.
15.
We have successfully applied electrospray ionization mass spectrometry (ESI-MS) and (1)H NMR analyses to study ligand substitution reactions of mu-oxo ruthenium bipyridine dimers cis,cis-[(bpy)(2)(L)RuORu(L')(bpy)(2)](n+) (bpy = 2,2'-bipyridine; L and L' = NH(3), H(2)O, and HO(-)) with solvent molecules, that is, acetonitrile, methanol, and acetone. The results clearly show that the ammine ligand is very stable and was not substituted by any solvents, while the aqua ligand was rapidly substituted by all the solvents. In acetonitrile and acetone solutions, the substitution reaction of the aqua ligand(s) competed with a deprotonation reaction from the ligand. The hydroxyl ligand was not substituted by acetonitrile or acetone, but it exchanged slowly with CH(3)O(-) in methanol. The substitution reaction of the aqua ligands in [(bpy)(2)(H(2)O)Ru(III)ORu(III)(H(2)O)(bpy)(2)](4+) was more rapid than that of the hydroxyl ligand in [(bpy)(2)(H(2)O)Ru(III)ORu(IV)(OH)(bpy)(2)](4+). In methanol, slow reduction of Ru(III) to Ru(II) was observed in all the mu-oxo dimers, and the Ru-O-Ru bridge was then cleaved to give mononuclear Ru(II) complexes.  相似文献   

16.
New Ru polypyridine complexes [(bpy)2Ru(L)]2+, where bpy = 2,2'-bipyridine and L = dipyrido[3,2-a:2',3'-c]-phenazine-2-carboxylic acid (dppzc), dipyrido[3,2-f:2',3'-h]quinoxaline-2,3-dicarboxylic acid (dpq(COOH)2), 3-hydroxydipyrido[3,2-f:2',3'-h]quinoxaline-2-carboxylic acid (dpq(OHCOOH)), 2,3-dihydroxydipyrido[3,2-f:2',3'-h]quinoxaline (dpq(OH)2), and [(L')Ru(dppzc)2]2+, where L' = bpy and 1,10-phenanthroline (phen), have been synthesized, characterized, and anchored to nanocrystalline TiO2 electrodes for light to electrical energy conversion in regenerative photoelectrochemical cells with I-/I2 acetonitrile electrolyte. These sensitizers have intense metal-to-ligand charge-transfer (MLCT) bands centered at approximately 450 nm. The effect of pH on the absorption and emission spectra of these complexes consisting of protonatable ligands has been investigated in water by spectrophotometric titration. The excited-state pKa values are more basic than the ground-state ones, except the pKa2 and pKa2* in [(bpy)2Ru(dpq(OH)2)]2+, which are equal, suggesting the localization of the lowest-energy MLCT on heteroaromatic bridging ligands, dppzc and dpq. Incident photon-to-current conversion efficiency (IPCE) is sensitive to the structural changes that resulted from introducing different functional groups, used for grafting.  相似文献   

17.
Paramagnetic diruthenium(III) complexes (acac)(2)Ru(III)(mu-OC(2)H(5))(2)Ru(III)(acac)(2) (6) and [(acac)(2)Ru(III)(mu-L)Ru(III)(acac)(2)](ClO(4))(2), [7](ClO(4))(2), were obtained via the reaction of binucleating bridging ligand, N,N,N',N'-tetra(2-pyridyl)-1,4-phenylenediamine [(NC(5)H(4))(2)-N-C(6)H(4)-N-(NC(5)H(4))(2), L] with the monomeric metal precursor unit (acac)(2)Ru(II)(CH(3)CN)(2) in ethanol under aerobic conditions. However, the reaction of L with the metal fragment Ru(II)(bpy)(2)(EtOH)(2)(2+) resulted in the corresponding [(bpy)(2)Ru(II) (mu-L) Ru(II)(bpy)(2)](ClO(4))(4), [8](ClO(4))(4). Crystal structures of L and 6 show that, in each case, the asymmetric unit consists of two independent half-molecules. The Ru-Ru distances in the two crystallographically independent molecules (F and G) of 6 are found to be 2.6448(8) and 2.6515(8) A, respectively. Variable-temperature magnetic studies suggest that the ruthenium(III) centers in 6 and [7](ClO(4))(2) are very weakly antiferromagnetically coupled, having J = -0.45 and -0.63 cm(-)(1), respectively. The g value calculated for 6 by using the van Vleck equation turned out to be only 1.11, whereas for [7](ClO(4))(2), the g value is 2.4, as expected for paramagnetic Ru(III) complexes. The paramagnetic complexes 6 and [7](2+) exhibit rhombic EPR spectra at 77 K in CHCl(3) (g(1) = 2.420, g(2) = 2.192, g(3) = 1.710 for 6 and g(1) = 2.385, g(2) = 2.177, g(3) = 1.753 for [7](2+)). This indicates that 6 must have an intermolecular magnetic interaction, in fact, an antiferromagnetic interaction, along at least one of the crystal axes. This conclusion was supported by ZINDO/1-level calculations. The complexes 6, [7](2+), and [8](4+) display closely spaced Ru(III)/Ru(II) couples with 70, 110, and 80 mV separations in potentials between the successive couples, respectively, implying weak intermetallic electrochemical coupling in their mixed-valent states. The electrochemical stability of the Ru(II) state follows the order: [7](2+) < 6 < [8](4+). The bipyridine derivative [8](4+) exhibits a strong luminescence [quantum yield (phi) = 0.18] at 600 nm in EtOH/MeOH (4:1) glass (at 77 K), with an estimated excited-state lifetime of approximately 10 micros.  相似文献   

18.
The complexes [Ru(tpy)(bpy)(dmso)](OSO(2)CF(3))(2) and trans-[Ru(tpy)(pic)(dmso)](PF(6)) (tpy is 2,2':6',2' '-terpyridine, bpy is 2,2'-bipyridine, pic is 2-pyridinecarboxylate, and dmso is dimethyl sulfoxide) were investigated by picosecond transient absorption spectroscopy in order to monitor excited-state intramolecular S-->O isomerization of the bound dmso ligand. For [Ru(tpy)(bpy)(dmso)](2+), global analysis of the spectra reveals changes that are fit by a biexponential decay with time constants of 2.4 +/- 0.2 and 36 +/- 0.2 ps. The first time constant is assigned to relaxation of the S-bonded (3)MLCT excited state. The second time constant represents both excited-state relaxation to ground state and excited-state isomerization to form O-[Ru(tpy)(bpy)(dmso)](2+). In conjunction with the S-->O isomerization quantum yield (Phi(S)(-->)(O) = 0.024), isomerization of [Ru(tpy)(bpy)(dmso)](2+) occurs with a time constant of 1.5 ns. For trans-[Ru(tpy)(pic)(dmso)](+), global analysis of the transient spectra reveals time constants of 3.6 +/- 0.2 and 118 +/- 2 ps associated with these two processes. In conjunction with the S-->O isomerization quantum yield (Phi(S)(-->)(O) = 0.25), isomerization of trans-[Ru(tpy)(pic)(dmso)](+) occurs with a time constant of 480 ps. In both cases, the thermally relaxed excited states are assigned as terpyridine-localized (3)MLCT states. Electronic state diagrams are compiled employing these data as well as electrochemical, absorption, and emission data to describe the reactivity of these complexes. The data illustrate that rapid bond-breaking and bond-making reactions can occur from (3)MLCT excited states formed from visible light irradiation.  相似文献   

19.
Arene ruthenium(II) complexes containing bis(pyrazolyl)methane ligands have been prepared by reacting the ligands L' (L' in general; specifically L(1) = H(2)C(pz)(2), L(2) = H(2)C(pz(Me2))(2), L(3) = H(2)C(pz(4Me))(2), L(4) = Me(2)C(pz)(2) and L(5) = Et(2)C(pz)(2) where pz = pyrazole) with [(arene)RuCl(mu-Cl)](2) dimers (arene = p-cymene or benzene). When the reaction was carried out in methanol solution, complexes of the type [(arene)Ru(L')Cl]Cl were obtained. When L(1), L(2), L(3), and L(5) ligands reacted with excess [(arene)RuCl(mu-Cl)](2), [(arene)Ru(L')Cl][(arene)RuCl(3)] species have been obtained, whereas by using the L(4) ligand under the same reaction conditions the unexpected [(p-cymene)Ru(pzH)(2)Cl]Cl complex was recovered. The reaction of 1 equiv of [(p-cymene)Ru(L')Cl]Cl and of [(p-cymene)Ru(pzH)(2)Cl]Cl with 1 equiv of AgX (X = O(3)SCF(3) or BF(4)) in methanol afforded the complexes [(p-cymene)Ru(L')Cl](O(3)SCF(3)) (L' = L(1) or L(2)) and [(p-cymene)Ru(pzH)(2)Cl]BF(4), respectively. [(p-cymene)Ru(L(1))(H(2)O)][PF(6)](2) formed when [(p-cymene)Ru(L(1))Cl]Cl reacts with an excess of AgPF(6). The solid-state structures of the three complexes, [(p-cymene)Ru{H(2)C(pz)(2)}Cl]Cl, [(p-cymene)Ru{H(2)Cpz(4Me))(2)}Cl]Cl, and [(p-cymene)Ru{H(2)C(pz)(2)}Cl](O(3)SCF(3)), were determined by X-ray crystallographic studies. The interionic structure of [(p-cymene)Ru(L(1))Cl](O(3)SCF(3)) and [(p-cymene)Ru(L')Cl][(p-cymene)RuCl(3)] (L' = L(1) or L(2)) was investigated through an integrated experimental approach based on NOE and pulsed field gradient spin-echo (PGSE) NMR experiments in CD(2)Cl(2) as a function of the concentration. PGSE NMR measurements indicate the predominance of ion pairs in solution. NOE measurements suggest that (O(3)SCF(3))(-) approaches the cation orienting itself toward the CH(2) moiety of the L(1) (H(2)C(pz)(2)) ligand as found in the solid state. Selected Ru species have been preliminarily investigated as catalysts toward styrene oxidation by dihydrogen peroxide, [(p-cymene)Ru(L(1))(H(2)O)][PF(6)](2) being the most active species.  相似文献   

20.
Nanocrystalline thin films of TiO2 cast on an optically transparent indium tin oxide glass were sensitized with ruthenium homo- and heterobinuclear complexes, [LL'Ru(BL)RuLL']n+ (n = 2, 3), where L and L' are 4,4'-dicarboxy-2,2'-bipyridine (dcb) and/or 2,2'-bipyridine (bpy) and BL is a rigid and linear heteroaromatic entity (tetrapyrido[3,2-a:2',3'-c:3",2"-h:2'",3'"-j]phenazine (tpphz) or 1,4-bis([1,10]phenanthroline[5,6-d]imidazol-2-yl)benzene (bfimbz)). The photophysical behavior of the RuII-RuII diads in solution indicated the occurrence of intercomponent energy transfer from the upper-lying Ru --> bpy charge-transfer (CT) excited state of the Ru(bpy)(2) moiety to the lower-lying Ru --> dcb CT excited state of the Ru(bpy)(dcb) (or Ru(dcb)(2)) subunit in the heterobinuclear complexes. These sensitizer diads adsorbed on nanostructured TiO2 surfaces in a perpendicular or parallel attachment mode. Adsorption was through the dcb ligands on one or both chromophoric subunits. The behavior of the adsorbed species was studied by nanosecond time-resolved transient absorption and emission spectroscopy, as well as by photocurrent measurements. In the TiO2-adsorbed samples where BL was bfimbz, the electron injection kinetics was very fast and could not be resolved because an electron is promoted from the metal center to the dcb ligand directly linked to the semiconductor. In the TiO2-adsorbed samples where BL was tpphz, for which, in the excited state, a BL localization of the lowest-lying metal-to-ligand charge transfer (MLCT) is observed, slower injection rates (9.5 x 10(7) s(-1) in [(bpy)(2)Ru(tpphz)Ru(bpy)(dcb(-))](3+)/TiO2 and 5.5 x 10(7) s(-1) in [(bpy)(dcb)Ru(tpphz)Ru(bpy)(dcb(-))](3+)/TiO2) were obtained. Among the systems, the heterotriad assembly [(bpy)(2)Ru(bfimbz)Ru(bpy)(dcb(2-))](2+)/TiO2 gave the best photovoltaic performance. In the first case, this was attributed to a fast electron injection initiated from a dcb-localized MLCT; in the second case, this is attributed to improved molecular orientation on the surface, which was due to rigidity and, at the same time, linearity of the heterotriad system, resulting in a slower charge recombination between the injected electron and the hole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号