首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electronic structures and magnetic properties for Rh-doped SnO2 crystals have been investigated by density functional theory. The results demonstrate a magnetic moment, which mainly arises from d orbital of Rhodium, of 1.0 μ B per Rhodium with a little contribution from the Oxygen atoms surrounding it. The Rh-doped SnO2 system exhibits half-metallic ferromagnetism with high Curie temperature. Several doped configurations calculations show that there are some robust ferromagnetic couplings between these local magnetic moments. The pd hybridization mechanism is responsible for the predicted ferromagnetism. These results suggest a recipe obtaining promising dilute magnetic semiconductor by doping nonmagnetic elements in SnO2 matrix.  相似文献   

2.
Ferromagnetic ordering of silver impurities in the AlN semiconductor is predicted by plane-wave ultrasoft pseudopotential and spin-polarized calculations based on density functional theory (DFT). It was found that an Ag impurity atom led to a ferromagnetic ground state in Ag0.0625Al0.9375N, with a net magnetic moment of 1.95 μB per supercell. The nitrogen neighbors at the basal plane in the AgN4 tetrahedron are found to be the main contributors to the magnetization. This magnetic behavior is different from the ones previously reported on transition metal (TM) based dilute magnetic semiconductor (DMS), where the magnetic moment of the TM atom impurity is higher than those of the anions bonded to it. The calculated electronic structure band reveals that the Ag-doped AlN is p-type ferromagnetic semiconductor with a spin-polarized impurity band in the AlN band gap. In addition, the calculated density of states reveals that the ferromagnetic ground state originates from the strong hybridization between 4d-Ag and 2p-N states. This study shows that 4d transition metals such as silver may also be considered as candidates for ferromagnetic dopants in semiconductors.  相似文献   

3.
We have performed a first-principle calculation of the structural, electronic and high pressure properties of RuSr2GdCu2O8, a ferromagnetic superconductor, by employing a full-potential linearized augmented plane-wave method within the density-functional theory. The effect of pressure was achieved by varying the volume of the unit cell with constant a:b:c ratio. The experimentally observed anti-phase rotation of RuO6 octahedra has been attributed to the residual forces on ORu which results in shear strain in the RuO2 layer. Partial charge analysis shows that applying pressure up to 6 GPa leads to hole creation in the CuO2 sheets which causes increase in the superconducting transition temperature. We have estimated the Curie temperature T M of this compound in the mean-field approximation using Heisenberg model with first-nearest neighbor exchange interactions determined from DFT calculations for parallel and anti-parallel spin configurations of Ru moment in RuO2 planes. The effect of pressure causes the magnetic moment of Ru atoms to decrease due to the increase of hybridization between the adjacent Ru atoms. The calculated exchange splitting in Cu d x 2 - y 2 states increases slightly with pressure but it is still very small that it does not affect superconductivity, and the hole doping mechanism is dominant.  相似文献   

4.
The electronic structures and magnetic properties of Si3CaC4 in zinc-blende phase has been studied by employing the first-principles method based on density functional theory (DFT). The calculations predict stable ferromagnetic ground state in Si3CaC4, resulting from calcium substitution for silicon. The calculated total magnetic moment is 2.00 μ B per supercell, which mainly arises from the Ca and neighboring C atoms. Band structures and density of states studies show half-metallic (HM) ferromagnetic property for Si3CaC4. The ferromagnetic coupling is generally observed between the Ca and C atoms. The ferromagnetism of Si3CaC4 can be explained by the hole-mediated double exchange mechanism. The sensitivity of half-metallicity of Si3CaC4 as a function of lattice constant is also discussed, and the half-metallicity can be kept in a wider lattice constant range.  相似文献   

5.
The crystal and magnetic structures of Dy1-xCaxBaCo2O5.5 for x = 0.0 and 0.1 have been studied by neutron powder diffraction and the crystal structures of both compounds were found to be best described in space group Pmmm with a ap × 2ap × 2ap unit cells where ap is the lattice parameter of the cubic perovskite unit cell. The a- and b-axes were found to decrease and increase abruptly between 315 and 350 K as the temperature increases and the unit cell volumes exhibit signs of excess thermal expansion in the temperature range from 260 to 315 K. Dy0.9Ca0.1BaCo2O5.5 orders antiferromagnetically for T ≤ 305 K into a G-type magnetic structure with a 2ap × 2ap × 2ap magnetic unit cell. DyBaCo2O5.5 exhibits two magnetically ordered phases and a G-type magnetic structure was observed at the investigated temperatures 260 and 290 K. A 2ap × 2ap × 4ap magnetic unit cell was needed for indexing of the magnetic reflections observed for T ≤ 230 K. The low temperature magnetic structure of DyBaCo2O5.5 is different from the observed magnetic structures of TbBaCo2O5.5 and HoBaCo2O5.5 despite the proximity of Tb, Dy and Ho in the periodic table. It is a relatively complex antiferromagnetic structure with both pyramidally and octahedrally coordinated Co ions in the intermediate spin state. It contains both ferro- and antiferromagnetic interactions and the magnetic moments are canted in the a, b-plane. The canting angles between the magnetic moments and the b-axis are 6.6 and 50.0° at 20 K for the pyramidally and octahedrally coordinated Co ions, respectively. The high and low temperature magnetic phases were found to coexist at 230 K.  相似文献   

6.
We systematically study the structural, electronic, and magnetic properties of chromium sulfide Y2CrS4 by using density-functional theory. We find that antiferromagnetic order is more energetically favorable than ferromagnetic state and near the Fermi level the main occupation is from Cr 3d states.  相似文献   

7.
X-ray diffraction and X-ray absorption near edge structure (XANES) spectra have been measured at the Со K-edge and Gd L 3-edge in GdCoO3 and Gd0.4Sr0.6CoO2.85 cobaltites. The effect of Sr substitution on the crystal structure and electronic and magnetic states of Co3+ ions in a Gd0.4Sr0.6CoO2.85 single crystal has been analyzed. The XANES measurements at the Co K-edge have not showed a noticeable shift of the absorption edge with an increase in the concentration of Sr. This indicates that the effective valence of cobalt does not change. An increase in the intensity of absorption at the Gd L 3-edge is due to an increase in the degree of hybridization of the Gd(5d) and O(2p) states. The effect of hole doping on the magnetic properties results in the appearance of the ferromagnetic component and in a significant increase in the magnetic moment.  相似文献   

8.
The electronic density of states, spin-splittings and atomic magnetic moments of SmCO7-compound have been studied using spin-polarized MS-Xα method. The results show that a few of electrons are transferred to Sm(5d0) orbital because of orbital hybridization between Sm and Co atoms in the compound. The exchange interactions between 3d and 5d electrons lead to the magnetic coupling between Sm and Co, and therefore, result in the long-range ferromagnetic order inside the SmCo7 compound. There are negative exchange couplings occurring at some levels, which weakens the strength of average coupling around Co lattice. So, the Curie temperature and Co-moment of SmCo7-decrease distinctly compared with pure Co. Compared with SmCo5 compound, the disordered substitution of Co-Co “dumbbell-atom” pairs for Sm changes the local environment of Co lattice, which makes the 2e site bear negative magnetic moment. The strength of hybridization near Fermi level weakens and the free energy of the compound increases obviously. Thus, SmCo7 is a metastable compound at room temperature. Considering the localization of 4f electrons and a few of 5d electrons arising from the orbital hybridization, the magnetic moment of Sm atom will be 1.61μB in SmCo7 compound, which is in agreement with the experimental values of Sm3+ ion-moment and Sm atom-moment in metals.  相似文献   

9.
The electronic structure and ferromagnetic properties of rutile TiO2 doped with double-impurities Ti1−2xCrxMnxO2 has been investigated using first-principles calculations within the density-functional theory (DFT) and the local density approximation (LDA), functional for treating the effects of exchange and correlation. They were performed using the scalar-relativistic implementation of the augmented spherical wave (ASW). The advantages of doping TiO2 with double impurities instead of single impurities are the increase of the total moment of the system and the exhibition of the half-metallic ferromagnetic nature in Cr- and Mn-doped TiO2 rutile. These behaviors are due to the hybridization of Cr 3d states and nearest-neighboring O 2p states. The spin-spin interaction between magnetic impurities examined by the total energy between parallel and antiparallel aligned states indicated that the Cr and Mn impurities are energetically favorable to be parallel coupled, which mean that the ferromagnetic state is more stable than the ferrimagnetic one. We proposed a bond magnetic polarons (BMP) model, based on localized carriers, to explain the mechanism of ferromagnetism in these systems.  相似文献   

10.
We argue that the centrosymmetric C2/c symmetry in BiMnO3 is spontaneously broken by antiferromagnetic (AFM) interactions existing in the system. The true symmetry is expected to be Cc, which is compatible with the noncollinear magnetic ground state, where the ferromagnetic order along one crystallographic axis coexists with the hidden AFM order and related to it ferroelectric polarization along two other axes. The C2/c symmetry can be restored by the magnetic field B ∼ 35 T, which switches off the ferroelectric polarization. Our analysis is based on the solution of the low-energy model constructed for the 3d-bands of BiMnO3, where all the parameters have been derived from the first-principles calculations. Test calculations for isostructural BiCrO3 reveal an excellent agreement with experimental data. The article is published in the original.  相似文献   

11.
The magnetic transport properties have been measured for La0.67-xYxCa0.33MnO3 ( 0 ⩽ x ⩽ 0.14) system. It was found that the transition temperature T p almost linearly moves to higher temperature as H increases. Electron spin resonance confirms that above T p , there exist ferromagnetic clusters. From the magnetic polaron point of view, the shift of T p vs. H was understood, and it was estimated that the size of the magnetic polaron is of 9.7 ∼ 15.4 ? which is consistent with the magnetic correlation length revealed by the small-angle neutron-scattering technique. The transport properties at temperatures higher than T p conform to the variable-range hopping mechanism. Received 27 August 2002 / Received in final form 2 December 2002 Published online 14 March 2003  相似文献   

12.
J. Nowotny  T. Bak  T. Burg 《Ionics》2007,13(2):79-82
The equilibration kinetics for polycrystalline TiO2 was monitored during prolonged oxidation at 1,323 K and p(O2)=75 kPa using the measurements of the electrical conductivity and thermoelectric power. The determined kinetic data indicate the presence of two kinetics regimes; the Regime I (rapid kinetics) and the Regime II (slow kinetics). The prolonged oxidation of TiO2 is considered in terms of the formation of Ti vacancies at the surface and their subsequent transport into the bulk. This effect, also observed for TiO2 single crystal, allows to obtain p-type TiO2 without the incorporation of acceptor-type foreign ions into the TiO2 lattice. This project was performed as part of the University of New South Wales Research and Development programme on solar-hydrogen.  相似文献   

13.
The magnetic structure of Sr5Rh4O12 is based on Ising chains of rhodium ions with a variable valence, Rh3+-Rh4+. The ordering in the chains is assumed to be ferromagnetic. It has been shown that the magnetic structure and phase diagram of Sr5Rh4O12 are well described in a model taking into account weak antiferromagnetic interactions between the nearest and next-nearest neighbors on the triangular lattice of ferromagnetic Ising chains. The ground state at low temperatures is the two-sublattice stripe phase; this phase in the magnetic field is transformed to the ferrimagnetic phase and, then, to the ferromagnetic phase. Small plateaus can be observed in the region of the transition from the ferrimagnetic phase to the ferromagnetic one.  相似文献   

14.
The tetragonal compound UNi2Si2 exhibits in zero magnetic field three different antiferromagnetic phases belowT N =124 K. They are formed by ferromagnetic basal planes, which are antiferromagnetically coupled along thec-axis with the propagation vectorq=(0, 0, q z ). Two additional order-order magnetic phase transitions are observed below T N , namely atT 1=108 K and T 2=40 K in zero magnetic field. All three phases exhibit strong uniaxial anisotropy confining the U moments to a direction parallel to the c-axis. UNi2Si2 single crystals were studied in detail by measuring bulk thermodynamic properties, such as thermal expansion, resistivity, susceptibility, and specific heat. A microscopic study using neutron diffraction was performed in magnetic fields up to 14.5 T parallel to the c-axis, and a complex magnetic phase diagram has been determined. Here, we present the analysis of specific-heat data measured in magnetic fields up to 14 T compared with the results of the neutron-diffraction study and with other thermodynamic properties of UNi2Si2.  相似文献   

15.
The magnetic properties of an oxygen-deficient nanocrystalline undoped titanium dioxide synthesized by the gas-phase, electric-explosion, and chemical method have been studied. The defect state was controlled using reduction treatments in vacuum or in a hydrogen atmosphere. It is shown that the defect state of the surface of nanocrystalline oxides (for example, the existence of vacancies in the anion sublattice and other defects) has a dominant influence on the formation of the magnetic properties of the samples under study. The main contributions to the magnetism of TiO2 nanoparticles after the reduction treatments are the paramagnetic contribution of the matrix, the paramagnetic Curie–Weiss contribution, and the contribution of the spontaneous magnetic moment provided by the existence of regions with different spin ordering. A heterogeneous magnetic state is found to exist in the TiO2 nanopowders; for example, at low temperatures, shifted hysteresis loops are observed as a result of a possible set of magnetic states with different spin orders. It is shown that a soft compaction or grinding of nanopowders in an agate mortar lead to substantial increase in the magnetization, sometimes, by a factor of more than two, regardless of the nanopowder synthesis method and the initial phase state of TiO2 (anatase or rutile structures). This experimental fact proves the key role of the surface defects and the magnetic moment carriers with different spin configurations localized mainly on the nanoparticle surface. The compaction changes the magnetization only in the case when the initial magnetic state has a nonlinear “quasi-superparamagnetic” character of the magnetization curve. As a result of predominant exchange interaction between the nanoparticles with a frustrated character of spin ordering on the nanoparticles surface, the ferromagnetic contribution increases as nanoparticles contact.  相似文献   

16.
17.
The temperature and field dependences of the magnetic characteristics of chromium-intercalated titanium ditelluride compounds are investigated over a wide range of chromium concentrations. The Cr0.5TiTe2 compound is studied by neutron diffraction. It is revealed that the system under investigation can occur in different magnetic states depending on the chromium concentration. An analysis of the experimental results demonstrates that the interaction between magnetic moments of chromium ions is predominantly ferromagnetic in character. An increase in the chromium concentration leads to ferromagnetic behavior with a pronounced magnetic hysteresis. The magnetic moments of chromium ions in these compounds are estimated.  相似文献   

18.
The results of neutron diffraction studies of the La0.70Sr0.30MnO2.85 compound and its behavior in an external magnetic field are stated. It is established that in the 4–300 K temperature range, two structural perovskite phases coexist in the sample, which differ in symmetry (groups R[`3]cR\bar 3c and I4/mcm). The reason for the phase separation is the clustering of oxygen vacancies. The temperature (4–300 K) and field (0–140 kOe) dependences of the specific magnetic moment are measured. It is found that in zero external field, the magnetic state of La0.70Sr0.30MnO2.85 is a cluster spin glass, which is the result of frustration of Mn3+-O-Mn3+ exchange interactions. An increase in external magnetic field up to 10 kOe leads to fragmentation of ferromagnetic clusters and then to an increase in the degree of polarization of local spins of manganese and the emergence of long-range ferromagnetic order. With increasing magnetic field up to 140 kOe, the magnetic ordering temperature reaches 160 K. The causes of the structural and magnetic phase separation of this composition and formation mechanism of its spin-glass magnetic state are analyzed.  相似文献   

19.
The density of states (DOS) and the magnetic moments of SmCrSb3 and GdCrSb3 have been studied by first principles full-potential linearized augmented plane wave (FP-LAPW) method based on density functional theory (DFT). For the exchange-correlation potential, the local-spin density approximations with correlation energy (LSDA+U) method have been used. Total and partial DOS have been computed using the WIEN2k code. DOS result shows the exchange-splittings of Cr-3d and rare-earth (R) 4f states electrons, which are responsible for the ground state ferromagnetic (FM) behavior of the systems. The FM behavior of these systems is strongly influenced by the average number of Cr-3d and Sm (Gd) 4f-electrons. The effective moment of SmCrSb3 is found to be 7.07 μB while for GdCrSb3 it is 8.27 μB. The Cr atom plays a significant role on the magnetic properties due to the hybridization between Cr-3d and Sb-5p states.  相似文献   

20.
The magnetic and thermal properties of the anion-deficient La0.70Sr0.30MnO2.85 manganite are investigated in wide temperature (4–350 K) range, including under hydrostatic pressure (0–1.1 GPa). Throughout the pressure range investigated, the sample is spin glass with diffused phase transition into paramagnetic state. It is established, that spin glass state is a consequence of exchange interaction frustration of the ferromagnetic clusters embeded into antiferromagnetic clusters. The magnetic moment freezing temperature T f of ferromagnetic clusters increases under pressure, freezing temperature dependence on pressure is characterized by derivative value ∼4.5 K/GPa, while the magnetic ordering T MO temperature dependence is characterized by derivative value ∼13 K/GPa. The volume fraction of sample having ferromagnetic state is V fer ∼ 13% and it increases under a pressure of 1.1 GPa by ΔV fer ≈ 6%. Intensification of ferromagnetic properties of the anion-deficient La0.70Sr0.30MnO2.85 manganite under hydrostatic pressure is a consequence of oxygen vacancies redistribution and unit cell parameters decrease. The most likely mechanism of frustrated exchange interactions formation is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号